Science, engineering, and biology informatics; 2 (Singapore, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLife science data mining / ed. by Wong S., Li C.-S. - Singapore: World Scientific, 2006. - (Science, engineering, and biology informatics; Vol.2). - Incl. bibl. ref. - Ind.: p.365-370. - ISBN 981-270-064-1; ISBN 981-270-065-X
 

Место хранения: 021 | Институт цитологии и генетики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ......................................................... v

Chapter 1.  Survey of Early Warning Systems for Environmental
            and Public Health Applications ...................... 1

    1.  Introduction ............................................ 1
    2.  Disease Surveillance .................................... 3
    3.  Reference Architecture for Model Extraction ............. 5
    4.  Problem Domain .......................................... 9
    5.  Data Sources ........................................... 10
    6.  Detection Methods ...................................... 12
    7.  Summary and Conclusion ................................. 13
    References ................................................. 14

Chapter 2.  Time-Lapse Cell Cycle Quantitative Data Analysis
            Using Gaussian Mixture Models ...................... 17

    1.  Introduction ........................................... 18
    2.  Material and Feature Extraction ........................ 20
        2.1.  Material and cell feature extraction ............. 20
        2.2.  Model the time-lapse data using AR model ......... 23
    3.  Problem Statement and Formulation ...................... 24
    4.  Classification Methods ................................. 26
        4.1.  Gaussian mixture models and the EM algorithm ..... 26
        4.2.  K-Nearest Neighbor (KNN) classifier .............. 28
        4.3.  Neural networks .................................. 28
        4.4.  Decision tree .................................... 29
        4.5.  Fisher clustering ................................ 30
    5.  Experimental Results ................................... 30
        5.1.  Trace identification ............................. 31
        5.2.  Cell morphologic similarity analysis ............. 33
        5.3.  Phase identification ............................. 35
        5.4.  Cluster analysis of time-lapse data .............. 37
    6.  Conclusion ............................................. 40
    Appendix A ................................................. 41
    Appendix В ................................................. 42
    References ................................................. 43

Chapter 3.  Diversity and Accuracy of Data Mining Ensemble ..... 47

    1.  Introduction ........................................... 47
    2.  Ensemble and Diversity ................................. 49
        2.1.  Why needs diversity? ............................. 49
        2.2.  Diversity measures ............................... 51
    3.  Probability Analysis ................................... 52
    4.  Coincident Failure Diversity ........................... 52
    5.  Ensemble Accuracy ...................................... 55
        5.1.  Relationship between random guess and accuracy
              of lower bound single models ..................... 55
        5.2.  Relationship between accuracy A and the number
              of models N ...................................... 56
        5.3.  When model's accuracy < 50% ...................... 57
    6.  Construction of Effective Ensembles .................... 58
        6.1.  Strategies for increasing diversity .............. 59
        6.2.  Ensembles of neural networks ..................... 60
        6.3.  Ensembles of decision trees ...................... 61
        6.4.  Hybrid ensembles ................................. 62
    7.  An Application: Osteoporosis Classification Problem .... 62
        7.1.  Osteoporosis problem ............................. 63
        7.2.  Results from the ensembles of neural nets ........ 63
        7.3.  Results from ensembles of the decision trees ..... 66
        7.4.  Results of hybrid ensembles ...................... 67
    8.  Discussion and Conclusions ............................. 68
    References ................................................. 70

Chapter 4.  Integrated Clustering for Microarray Data .......... 73

    1.  Introduction ........................................... 73
    2.  Related Work ........................................... 77
    3.  Data Preprocessing ..................................... 81
    4.  Integrated Clustering .................................. 83
        4.1.  Clustering algorithms ............................ 83
        4.2.  Integration methodology .......................... 88
    5.  Experimental Evaluation ................................ 89
        5.1.  Evaluation methodology ........................... 89
        5.2.  Results .......................................... 91
        5.3.  Discussion ....................................... 93
    6.  Conclusions ............................................ 94
    References ................................................. 94

Chapter 5.  Complexity and Synchronization of EEG with
            Parametric Modeling ................................ 99

    1.  Introduction .......................................... 100
        1.1.  Brief review of EEG recording analysis .......... 100
        1.2.  AR modeling based EEG analysis .................. 101
    2.  TV AR Modeling ........................................ 104
    3.  Complexity Measure .................................... 105
    4.  Synchronization Measure ............................... 109
    5.  Conclusions ........................................... 113
    References ................................................ 114

Chapter 6.  Bayesian Fusion of Syndromic Surveillance with
            Sensor Data for Disease Outbreak Classification ... 119

    1.  Introduction .......................................... 120
    2.  Approach .............................................. 122
        2.1.  Bayesian belief networks ........................ 122
        2.2.  Syndromic data .................................. 126
        2.3.  Environmental data .............................. 128
        2.4.  Test scenarios .................................. 130
        2.5.  Evaluation metrics .............................. 130
    3.  Results ............................................... 131
        3.1.  Scenario 1 ...................................... 131
        3.2.  Scenario 2 ...................................... 134
        3.3.  Promptness ...................................... 135
    4.  Summary and Conclusions ............................... 136
    References ................................................ 137

Chapter 7.  An Evaluation of Over-the-Counter Medication
            Sales for Syndromic Surveillance .................. 143

    1.  Introduction .......................................... 143
    2.  Background and Related Work ........................... 144
    3.  Data .................................................. 144
    4.  Approaches ............................................ 145
        4.1.  Lead-lag correlation analysis ................... 145
        4.2.  Regression test of predictive ability ........... 146
        4.3.  Detection-based approaches ...................... 148
        4.4.  Supervised algorithm for outbreak detection
              in OTC data ..................................... 148
        4.5.  Modified Holt-Winters forecaster ................ 150
        4.6.  Forecasting based on multi-channel regression ... 151
    5.  Experiments ........................................... 153
        5.1.  Lead-lag correlation analysis of OTC data ....... 153
        5.2.  Regression test of the predicative value
              of OTC .......................................... 154
        5.3.  Results from detection-based approaches ......... 156
    6.  Conclusions and Future Work ........................... 158
    References ................................................ 159

Chapter 8.  Collaborative Health Sentinel ..................... 163

    1.  Introduction .......................................... 163
    2.  Infectious Disease and Existing Health Surveillance
        Programs .............................................. 166
    3.  Elements of the Collaborative Health Sentinel (CHS)
        System ................................................ 170
        3.1.  Sampling ........................................ 170
        3.2.  Creating a national health map .................. 177
        3.3.  Detection ....................................... 177
        3.4.  Reaction ........................................ 183
        3.5.  Cost considerations ............................. 184
    4.  Interaction with the Health Information Technology
        (HCIT) World .......................................... 185
    5.  Conclusion ............................................ 188
    References ................................................ 189
    Appendix A - HL7 .......................................... 192

Chapter 9.  A Multi-Modal System Approach for Drug Abuse
            Research and Treatment Evaluation: Information
            Systems Needs and Challenges ...................... 195

    1.  Introduction .......................................... 195
    2.  Context ............................................... 198
        2.1.  Data sources .................................... 198
        2.2.  Examples of relevant questions .................. 199
    3.  Possible System Structure ............................. 201
    4.  Challenges in System Development and Implementation ... 204
        4.1.  Ontology development ............................ 204
        4.2.  Data source control, proprietary issues ......... 205
        4.3.  Privacy, security issues ........................ 205
        4.4.  Costs to implement/maintain system .............. 206
        4.5.  Historical hypothesis-testing paradigm .......... 206
        4.6.  Utility, usability, credibility of such
              a system ........................................ 206
        4.7.  Funding of system development ................... 207
    5.  Summary ............................................... 207
    References ................................................ 208

Chapter 10. Knowledge Representation for Versatile Hybrid
            Intelligent Processing Applied in Predictive
            Toxicology ........................................ 213

    1.  Introduction .......................................... 214
    2.  Hybrid Intelligent Techniques for Predictive
        Toxicology Knowledge Representation ................... 217
    3.  XML Schemas for Knowledge Representation and
        Processing in AI and Predictive Toxicology ............ 218
    4.  Towards a Standard for Chemical Data Representation
        in Predictive Toxicology .............................. 220
    5.  Hybrid Intelligent Systems for Knowledge
        Representation in Predictive Toxicology ............... 225
        5.1.  A formal description of implicit and explicit
              knowledge-based intelligent systems ............. 226
        5.2.  An XML schema for hybrid intelligent systems .... 228
    6.  A Case Study .......................................... 231
        6.1.  Materials and methods ........................... 232
        6.2.  Results ......................................... 233
    7. Conclusions ............................................ 235
    References ................................................ 236

Chapter 11. Ensemble Classification System Implementation
            for Biomedical Microarray Data .................... 239

    1.  Introduction .......................................... 240
    2.  Background ............................................ 241
        2.1.  Reasons for ensemble ............................ 241
        2.2.  Diversity and ensemble .......................... 241
        2.3.  Relationship between measures of diversity and
              combination method .............................. 243
        2.4.  Measures of diversity ........................... 243
        2.5.  Microarray data ................................. 244
    3.  Ensemble Classification System (ECS) Design ........... 245
        3.1.  ECS overview .................................... 245
        3.2.  Feature subset selection ........................ 247
        3.3.  Base classifiers ................................ 248
        3.4.  Combination strategy ............................ 249
    4.  Experiments ........................................... 250
        4.1.  Experimental datasets ........................... 250
        4.2.  Experimental results ............................ 252
    5.  Conclusion and Further Work ........................... 254
    References ................................................ 255

Chapter 12. An Automated Method for Cell Phase
            Identification in High Throughput
            Time-Lapse Screens ................................ 257

    1.  Introduction .......................................... 258
    2.  Nuclei Segmentation and Tracking ...................... 259
    3.  Cell Phase Identification ............................. 260
        3.1.  Feature calculation ............................. 260
        3.2.  Identifying cell phase .......................... 262
        3.3.  Correcting cell phase identification errors ..... 265
    4.  Experimental Results .................................. 266
    5.  Conclusion ............................................ 272
    References ................................................ 272

Chapter 13. Inference of Transcriptional Regulatory
            Networks Based on Cancer Microarray Data .......... 275

    1.  Introduction .......................................... 275
    2.  Subnetworks and Transcriptional Regulatory Networks
        Inference ............................................. 277
        2.1.  Inferring subnetworks using z-score ............. 277
        2.2.  Inferring subnetworks based on graph theory ..... 278
        2.3.  Inferring subnetworks based on Bayesian
              networks ........................................ 279
        2.4.  Inferring transcriptional regulatory networks
              based on integrated expression and sequence
              data ............................................ 283
    3.  Multinomial Probit Regression with Baysian Gene
        Selection ............................................. 284
        3.1.  Problem formulation ............................. 284
        3.2.  Bayesian variable selection ..................... 286
        3.3.  Bayesian estimation using the strongest genes ... 288
        3.4.  Experimental results ............................ 289
    4.  Network Construction Based on Clustering and
        Predictor Design ...................................... 293
        4.1.  Predictor construction using reversible jump
              MCMC annealing .................................. 293
        4.2.  CoD for predictors .............................. 295
        4.3.  Experimental results on a Myeloid line .......... 296
    5.  Concluding Remarks .................................... 298
    References ................................................ 299

Chapter 14. Data Mining in Biomedicine ........................ 305

    1.  Introduction .......................................... 305
    2.  Predictive Model Construction ......................... 306
        2.1.  Derivation of unsupervised models ............... 307
        2.2.  Derivation of supervised models ................. 311
    3.  Validation ............................................ 316
    4.  Impact Analysis ....................................... 318
    5.  Summary ............................................... 319
    References ................................................ 319

Chapter 15. Mining Multilevel Association Rules from Gene
            Ontology and Microarray Data ...................... 321

    1.  Introduction .......................................... 321
    2.  Proposed Methods ...................................... 323
        2.1.  Preprocessing ................................... 323
        2.2.  Hierarchy-information encoding .................. 324
    3.  The MAGO Algorithm .................................... 326
        3.1.  MAGO algorithm .................................. 327
        3.2.  CMAGO (Constrained Multilevel Association
              rules with Gene Ontology) ....................... 329
    4.  Experimental Results .................................. 330
        4.1.  The characteristic of the dataset ............... 331
        4.2.  Experimental results ............................ 331
        4.3.  Interpretation .................................. 334
    5.  Concluding Remarks .................................... 335
    References ................................................ 336

Chapter 16. A Proposed Sensor-Configuration and Sensitivity
            Analysis of Parameters with Applications to
            Biosensors ........................................ 339

    1.  Introduction .......................................... 340
    2.  Sensor-System Configuration ........................... 342
    3.  Optical Biosensors .................................... 346
        3.1.  Relationship between parameters ................. 347
        3.2.  Modelling of parameters ......................... 351
    4.  Discussion ............................................ 356
    5.  Conclusion ............................................ 358
    References ................................................ 359

Epilogue ...................................................... 361
    References ................................................ 364

Index ......................................................... 365


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:30 2019. Размер: 21,835 bytes.
Посещение N 1579 c 20.10.2009