Costa D. An invitation to variational methods in differential equations (Boston, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCosta D. An invitation to variational methods in differential equations. - Boston: Birkhaueser, 2007. - xii, 138 p.: ill.- Ref.: p.131-134. - Ind.: p.135-138. - ISBN 978-0-8176-4535-9
 

Оглавление / Contents
 
Preface ........................................................ ix

Some Notations and Conventions ................................. xi

1.  Introduction ................................................ 1
    1. Five Illustrating Problems ............................... 1

2.  Critical Points Via Minimization ............................ 7
    1. Basic Results ............................................ 7
    2. Application to a Dirichlet Problem ...................... 11
    3. Exercises ............................................... 15

3.  The Deformation Theorem .................................... 19
    1. Preliminaries ........................................... 19
    2. Some Versions of the Deformation Theorem ................ 20
    3. A Minimum Principle and an Application .................. 24
    4. Exercises ............................................... 27

4.  The Mountain-Pass Theorem .................................. 29
    1. Critical Points of Minimax Type ......................... 29
    2. The Mountain-Pass Theorem ............................... 31
    3. Two Basic Applications .................................. 32
    4. Exercises ............................................... 37

5.  The Saddle-Point Theorem ................................... 39
    1. Preliminaries. The Topological Degree ................... 39
    2. The Abstract Result ..................................... 41
    3. Application to a Resonant Problem ....................... 42
    4. Exercises ............................................... 46

6.  Critical Points under Constraints .......................... 49
    1. Introduction. The Basic Minimization Principle
       Revisited ............................................... 49
    2. Natural Constraints ..................................... 50
    3. Applications ............................................ 52
    4. Exercises ............................................... 62

7.  A Duality Principle ........................................ 63
    1. Convex Functions. The Legendre Fenchel Transform ........ 63
    2. A Variational Formulation for a Class of Problems ....... 66
    3. A Dual Variational Formulation .......................... 67
    4. Applications ............................................ 70

8.  Critical Points under Symmetries ........................... 75
    1. Introduction ............................................ 75
    2. The Lusternik - Schnirelman Theory ...................... 76
    3. The Basic Abstract Multiplicity Result .................. 78
    4. Application to a Problem with a Z2-Symmetry ............. 83

9.  Problems with an S1-Symmetry ............................... 87
    1. A Geometric S1-index .................................... 87
    2. A Multiplicity Result ................................... 90
    3. Application to a Class of Problems ...................... 92
    4. A Dirichlet Problem on a Plane Disk ..................... 95

10. Problems with Lack of Compactness .......................... 99
    1. Introduction ............................................ 99
    2. Two Beautiful Lemmas ................................... 100
    3. A Problem in fig.1N ........................................ 103

11. Lack of Compactness for Bounded Ω ......................... 115
    1. (PS)с for Strongly Resonant Problems ................... 115
    2. A Class of Indefinite Problems ......................... 118
    3. An Application ......................................... 121

12. Appendix .................................................. 125
    1. Ekeland Variational Principle .......................... 125

References .................................................... 131
Index ......................................................... 135


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:28 2019. Размер: 7,628 bytes.
Посещение N 1974 c 20.10.2009