Bolouri H. Computational modeling of gene regulatory networks: a primer (London, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBolouri H. Computational modeling of gene regulatory networks: a primer. - London: Imperial College Press, 2008. - xiv, 326 p.: col. ill. - Ind.: p.321-326. - ISBN 1-84816-221-9; ISBN-13 978-1-84816-221-1
 

Место хранения: 021 | Институт цитологии и генетики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Introduction ................................................ 1

    The increasing role of computational analysis in biology .... 1
    What this book tries to achieve ............................. 3
    Who should read this book ................................... 4
    How this book is organized .................................. 6
    Acknowledgments ............................................. 7
    Feedback .................................................... 7

2.  What Is a System, and Why Should We Care? ................... 9

    Linearity versus nonlinearity ............................... 9
    Nonlinear systems .......................................... 13
    Nonlinear systems are the norm, not the exception,
    in biology ................................................. 14

3.  What Models Can and Cannot Predict ......................... 17

    Interpolation versus extrapolation ......................... 17
    Iterative model refinement by experimental falsification
    of model extrapolations .................................... 21
    The importance of remembering the limitations of data ...... 22
    Cross-validation ........................................... 23
    Function approximation versus classification ............... 25
    Appendix: A model of biphasic kinetics ..................... 26

4.  Why Make Computational Models of Gene Regulatory
    Networks? .................................................. 29

    What is a model? ........................................... 29
    What is the goal of GRN modeling? .......................... 31
    Why make computational models of GRNs? ..................... 32
    Serendipitous benefits of computational GRN modeling ....... 33
    Some pitfalls of modeling .................................. 34
    Good practice guidelines ................................... 35
    Appendix: Working definitions of 'genes' and
    'Gene Regulatory Networks' ................................. 36

5.  Graphical Representations of Gene Regulatory Networks ...... 39
    
    Desirable features of computational GRN representations .... 39
    Graphical representation of GRN activity in multiple
    compartments ............................................... 43
    Computational network building, editing, and topological
    analysis ................................................... 46

6.  Implicit Modeling via Interaction Network Maps ............. 49

    Data interpretation through implicit modeling .............. 49
    Global molecular interaction maps — Guilt by association ... 50
    Why do we need global molecular interaction maps? .......... 53
    Example uses of interaction maps as predictive models ...... 54

7.  The Biochemical Basis of Gene Regulation ................... 61

    The probability of a chemical reaction ..................... 61
    A simple method for modeling stochastic molecular
    reaction events ............................................ 63
    Chemical kinetics in cells are different from in vitro
    kinetics ................................................... 65
    Compared to transcription, most signaling events are
    instantaneous .............................................. 66
    How transcription factors find their targets on DNA ........ 67
    DNA bending and looping by transcription factors ........... 70
    Spatial localization: multi-compartment modeling ........... 71
    Morphogen gradients ........................................ 72
    Appendix: Stochastic simulation using Gillespie's
    algorithm .................................................. 73

8.  A Single-Cell Model of Transcriptional Regulation .......... 77

    Modeling strategy .......................................... 77
    Modeling framework and notation ............................ 78
    A single-cell stochastic model of transcriptional
    regulation ................................................. 79
    Recruitment of RNA polymerase II complex and
    transcription initiation ................................... 82
    Appendix: Simulation of the distribution of gene
    expression levels in a population of genetically
    identical cells ............................................ 89

9.  Simplified Models: Mass-Action Kinetics .................... 99

    Why model with mass-action kinetics? ....................... 99
    The fundamentals of Ordinary Differential Equations
    (ODEs) .................................................... 100
    Steady states ............................................. 103
    Average promoter occupancy by a single transcription
    factor .................................................... 104
    Promoter occupancy by two or more factors ................. 105
    A two-step kinetic model of mRNA and protein
    concentration ............................................. 107
    mRNA and protein levels at steady state ................... 109
    Promoter occupancy as a function of regulator
    concentration ............................................. 109
    Analytical solution of mRNA and protein time-course
    kinetics for genes regulated by posttranscriptionally
    activated factors ......................................... 110
    The time-course behavior of genes regulated by other
    genes ..................................................... 112
    The Boolean approximation to transcription kinetics ....... 114
    In the absence of feedback, transcription factors
    in animals do not reach steady state ...................... 115
    Positive and negative feedback loops can drive
    gene expression to fixed steady-state levels .............. 117
    Gene expression as a function of DNA-bound regulator
    activity .................................................. 117
    Appendix A: ODE modeling with Berkeley Madonna ............ 119
    Appendix B: Derivation of mathematical expressions
    for mRNA and protein levels as a function of changing
    occupancy levels .......................................... 120
    Appendix C: Time to steady state for genes not
    regulated by feedback ..................................... 122

10. Simplified Models: Boolean and Multi-valued Logic ......... 123

    Background ................................................ 123
    Discrete-variable piecewise linear ODEs ................... 125
    Multi-valued logic networks ............................... 129
    Implicit-time logic networks (a.k.a. kinetic logic) ....... 132
    Learning discrete logic models directly from data ......... 135
    Linear ODE models of transcriptional regulation ........... 136
    Process algebras .......................................... 139
    Appendix: Logic simulation model files .................... 140

11. Simplified Models: Bayesian Networks ...................... 143

    A preview ................................................. 145
    Probabilities: A brief review ............................. 146
    Continuous and discrete probability distributions ......... 148
    The theoretical foundation of BNs: Conditional
    probabilities ............................................. 149
    Making predictions with a given BN ........................ 151
    Modeling networks with feedback as Dynamic Bayesian
    Networks .................................................. 154
    Constructing BNs directly from data ....................... 156
    Causality in BNs .......................................... 161
    Computational efficiency in BNs ........................... 162
    Current limitations of Bayesian Networks .................. 163
    Resources for BNs ......................................... 164
    Appendix: Exploring BNs with Hugin ........................ 165
  
12. The Relationship between Logic and Bayesian Networks ...... 167

    Noisy logic networks ...................................... 167
    Probabilistic Boolean Networks ............................ 169
    Learning PBNs from data ................................... 171
    Some useful properties of PBNs ............................ 172

13. Network Inference in Practice ............................. 175

    A summary of the general approach to network
    reconstruction ............................................ 175
    Learning logic models from gene expression data alone ..... 178
    Learning continuous-valued network models from
    expression data ........................................... 182
    Network structure building by data integration ............ 184

14. Searching DNA Sequences for Transcription Factor
    Binding Sites ............................................. 189

    Consensus sequences ....................................... 189
    Position Weight Matrices .................................. 191
    Visualizing PWMs with sequence logos ...................... 194
    A taxonomy of TFBS prediction algorithms .................. 196
    Resources for TFBS prediction ............................. 201
    Some good practice guidelines ............................. 202
    Measuring the performance of binding site prediction
    algorithms ................................................ 204
    Extracting predicted TFBSs from ChIP-chip data ............ 206
    Appendix: DNA sequence processing ......................... 211

15. Model Selection Theory .................................... 213

    Fitting error versus generalization error ................. 213
    Model misspecification .................................... 214
    Model invalidation ........................................ 215
    Computational Modeling of Gene RegulatoryNetworks —
    A Primer Model selection criteria ......................... 216
    How to calculate the log-likelihood value for a
    regression model .......................................... 219
    Parameter counts of common modeling frameworks ............ 221
    The effect of function complexity ......................... 222
    Multi-model averaging ..................................... 223
    Other approaches to model refinement ...................... 224

16. Simplified Models — GRN State Signatures in Data .......... 225

    Principal Component Analysis .............................. 226
    Nonlinear PCA ............................................. 232
    Multi-dimensional Scaling (MDS) ........................... 235
    Partial Least Squares (PLS) ............................... 237
    The implicit approach to pattern detection in complex
    data ...................................................... 237
    Appendix: Step-by-step example PCA transformations ........ 239

17. System Dynamics ........................................... 243

    Transients and steady states .............................. 243
    Phase portraits ........................................... 245
    Parameter analysis ........................................ 249
    Parameter optimization and the evolution of
    optimal dynamics .......................................... 252
    Bistability through mutual inhibition ..................... 254
    Negative auto-regulation .................................. 255
    Mixed positive and negative feedback ...................... 258
    Appendix: Analyzing feedback dynamics ..................... 260

18. Robustness Analysis ....................................... 265
    
    Robustness and sensitivity ................................ 265
    Perturbations in system state variables versus
    perturbations in system parameters ........................ 266
    Failure tolerance versus graceful degradation ............. 266
    Global and local perspectives ............................. 268
    Local sensitivity analysis ................................ 268
    Global sensitivity analysis ............................... 270
    The role of network topology in robustness ................ 273
    Evolution of robustness ................................... 275
    Robustness to transcriptional noise ....................... 277
    Context and completeness of models ........................ 277

19. GRN Modules and Building Blocks ........................... 279

    Hierarchical modularity in engineered systems ............. 279
    Organizational principles in GRNs ......................... 281
    Network motifs in GRNs .................................... 283
    Functional building blocks ................................ 288
    Using network motifs and functional building blocks
    to decode GRNs ............................................ 290

20. Notes on Data Processing for GRN Modeling ................. 293

    What type of data is best for modeling? ................... 293
    Beware of the side-effects of the methods used to
    collect data .............................................. 294
    How many time points are sufficient for modeling
    dynamics? ................................................. 295
    In vivo versus ex vivo and in vitro data .................. 296
    Using meaningful units to quantify data ................... 297
    Misinterpreting data ...................................... 297

21. Applications of Computational GRN Modeling ................ 299

    Overview .................................................. 299
    GRN modeling challenges in medical systems biology ........ 301
    Modeling hierarchical, distributed processing in the
    immune system ............................................. 305

22.  Quo Vadis ................................................ 311
 
    The US$ 1000 genome and its challenges .................... 311
    Single-cell biology ....................................... 313
    Multi-scale modeling ...................................... 315
    Software engineering challenges ........................... 316
    Becoming bilingual ........................................ 318
    Molecular biology is still in the discovery phase ......... 319

Index ......................................................... 321


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:28 2019. Размер: 18,118 bytes.
Посещение N 2160 c 20.10.2009