Tuszynski J.A. Molecular and cellular biophysics (Boca Raton; London, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTuszynski J.A. Molecular and cellular biophysics. - Boca Raton; London: Chapman & Hall / CRC, 2008. - xx, 520 p.: ill. - (Series in pure and applied physics). - Ind.: p.499-520. - ISBN 1-58488-675-7
 

Место хранения: 040 | Институт биофизики СО РАН | Красноярск | Библиотека

Оглавление / Contents
 
1.  What Is Life? ............................................... 1
    1.1.  Hierarchical Organization of Knowledge ................ 1
    1.2.  General Characteristics of Living Systems ............. 5
    1.3.  Artificial Life ....................................... 7
    1.4.  Biological Information, Information Processing and
          Signalling ........................................... 17
    1.5.  Origin of Life ....................................... 23
    1.6.  Emergence, Intelligence and Consciousness ............ 47

2.  What Are the Molecules of Life? ............................ 61
    2.1.  Nucleic Acids, DNA, RNA .............................. 61
          2.1.1.  Chemical Bonds and Bond Energies ............. 65
    2.2.  Generalized Ester Bonds .............................. 65
    2.3.  Directionality of Chemical Bonds ..................... 69
    2.4.  Types of Inter-Atomic Interactions ................... 80
          2.4.1.  Ionic Interactions ........................... 80
          2.4.2.  Covalent Bonds ............................... 83
          2.4.3.  Free Radicals ................................ 86
          2.4.4.  Van der Waals Forces ......................... 86
    2.5.  The Hydrogen Bonds and Hydrophobic Interactions ...... 92
          2.5.1.  Polysaccharides ............................. 100
    2.6.  Amphipatic Molecules in Water Environments .......... 101
          2.6.1.  Fatty Acids ................................. 103
          2.6.2.  Lipids ...................................... 105
    2.7.  Structure of Proteins ............................... 105
          2.7.1.  The Polypeptide Chains ...................... 110
          2.7.2.  Proteins .................................... 112
          2.7.3.  The Process of Protein Folding .............. 120
          2.7.4.  Electrophoresis of Proteins ................. 124
          2.7.5.  Protein Interaction with Environment ........ 125
          2.7.6.  Electron Transfer in Proteins ............... 126
    2.8.  Structure of Nucleic Acids .......................... 127
          2.8.1.  The Electrostatic Potential of DNA .......... 133
          2.8.2.  DNA: Information and Damage ................. 134
          2.8.3.  Fluorescence in Biomolecules ................ 136

3.  What Is a Biological Cell? ................................ 151
    3.1.  Cytoplasm ........................................... 151
          3.1.1.  Osmotic Pressure of Cells ................... 152
          3.1.2.  Osmotic Work ................................ 153
    3.2.  Cytoskeleton ........................................ 154
          3.2.1.  The Cytoskeleton ............................ 154
          3.2.2.  Biopolymers of the Cytoskeleton ............. 156
          3.2.3.  Tubulin ..................................... 157
          3.2.4.  Microtubules ................................ 161
          3.2.5.  Actin Filaments ............................. 166
          3.2.6.  Actin Binding Proteins ...................... 170
          3.2.7  Intermediate Filaments ....................... 171
    3.3.  Tubulin Isotype Homology Modelling .................. 173
          3.3.1.  Solvent Accessible Surface Area ............. 177
          3.3.2.  Net Charge .................................. 177
          3.3.3.  Dipole Moment Estimation .................... 178
          3.3.4.  Human Repeats and Dipole-Dipole
                  Interactions ................................ 178
          3.3.5.  Motor Proteins .............................. 185
    3.4.  Anisotropic Elastic Properties of Microtubules ...... 188
    3.5.  Centrioles, Basal Bodies, Cilia and Flagella ........ 197
    3.6.  Networks and Meshworks of Protein Filaments,
          Stress Fibers and Tensegrity ........................ 201
    3.7.  Cell Nucleus and Chromosomes ........................ 203
          3.7.1.  Nuclear Chromatin, Chromosomes, Nuclear
                  Lamina ...................................... 203
          3.7.2.  Chromatin/Chromosomes ....................... 204
    3.8.  Mitochondria and Proton Pumps: Energy Generation
          and Utilization in the Cell ......................... 206
          3.8.1.  Cell Energetics: Chloroplasts and
                  Mitochondria ................................ 206
          3.8.2.  The Cell as a Machine ....................... 208
          3.8.3.  Active Transport ............................ 209
          3.8.4.  Ion Channels and Ion Pumps .................. 210
    3.9.  Cytochrome Oxidase Enzymes .......................... 212
          3.9.1.  Introduction ................................ 212
          3.9.2.  The Biochemical Structure and Function
                  of the Cytochromes .......................... 213
          3.9.3.  A Simplified Model Calculation .............. 218
          3.9.4.  A Proposed Mechanism ........................ 221
    3.10. Membranes and Vesicles .............................. 224
    3.11. Motor Proteins and Their Role in Cellular
          Processes ........................................... 233
          3.11.1. Myosin ...................................... 236
          3.11.2. Kinesin Family .............................. 239
          3.11.3. Ned Dimer Structure ......................... 241
          3.11.4. Dynein ...................................... 242
          3.11.5. Myosin V .................................... 243
          3.11.6. Myosin VI ................................... 249
    3.12. Directed Binding as a Model of Kinesin Walk ......... 250
          3.12.1. Chemical Reaction-based Models .............. 256
          3.12.2. Mechanically Based Models ................... 258
          3.12.3. Models with Alternating Chemical and
                  Mechanical Transformations .................. 259
    3.13. Other Structures .................................... 268
    3.14. Large Polar Molecules ............................... 269
          3.14.1. Bioferroelectricity ......................... 269

4.  What Are Life Processes? .................................. 307
    4.1.  Oxidative Phosphorylation ........................... 307
          4.1.1.  The Biochemical Energy Currency -
                  The ATP Molecule ............................ 308
    4.2.  Diffusion Processes ................................. 313
          4.2.1.  Translational Diffusion ..................... 314
          4.2.2.  Diffusional Flow Across Membranes ........... 318
    4.3.  Proton Transport and Bioenergetics .................. 329
          4.3.1.  Proton Transport ............................ 329
          4.3.2.  Bioenergetics: The Davydov Model ............ 329
    4.4.  Electronic and Ionic Conductivities of
          Microtubules and Actin Filaments .................... 335
          4.4.1.  The Neuron .................................. 336
          4.4.2.  The Cytoskeleton ............................ 340
          4.4.3.  Overview of Biological Conductivity ......... 342
          4.4.4.  Intrinsic Electronic Conductivity of
                  Microtubules ................................ 345
          4.4.5.  Actin Filaments Support Non-linear
                  Ionic Waves ................................. 368
          4.4.6.  Long-range Spatio-temporal Ionic Waves
                  along Microtubules .......................... 373
          4.4.7.  Dendritic Cytoskeleton Information
                  Processing Model ............................ 378
          4.4.8.  The Inter-relation Between the Neural
                  Cytoskeleton and the Membrane ............... 381
          4.4.9.  Relationship to Cognitive Functions ......... 382
          4.4.10. The Potential for Bioelectronic
                  Applications and Neuromorphic Computing ..... 385
          4.4.11. Discussion .................................. 387
    4.5.  Mechanisms of Exciton Energy Transfer in Scheibe
          Aggregates .......................................... 389
          4.5.1.  The Exciton Model ........................... 390
          4.5.2.  Exciton Domain Size ......................... 393
          4.5.3.  Random Walk Model ........................... 395
          4.5.4.  Phonons ..................................... 397
          4.5.5.  Exciton-Phonon Coupling ..................... 398
          4.5.6.  The Role of Non-linearity ................... 399
          4.5.7.  Conclusions ................................. 400
    4.6.  Conformational Transitions in Proteins .............. 403
          4.6.1.  The Protein-glass Model ..................... 406
          4.6.2.  The Protein-machine Model ................... 407
    4.7.  Vesicle Transport and Molecular Motors .............. 409
          4.7.1.  Chemo-Chemical Machines ..................... 409
          4.7.2.  Biological Machines as Biased Maxwell's
                  Demons ...................................... 413
          4.7.3.  Pumps and Motors as Chemo-chemical
                  Machines .................................... 415
    4.8.  Muscle Contraction .................................. 420
          4.8.1.  Biophysics of Muscles ....................... 420
          4.8.2.  Biophysical Mechanisms, Contractile
                  Proteins .................................... 424
    4.9.  Subcellular Structure Formation ..................... 428
          4.9.1.  Aspects of Polymerization of Microtubules ... 428
          4.9.2.  Simple Models of Microtubule Assembly ....... 430
          4.9.3.  Developing a Stochastic Model ............... 435
          4.9.4.  A Stochastic Model Without Rescues .......... 436
          4.9.5.  The Averaged Picture; Master Equations ...... 438
          4.9.6.  Stochastic Models with Rescues .............. 440
          4.9.7.  A Model with a Finite Collapse Velocity ..... 442
          4.9.8.  Conditions for Stationary Bell-Shaped
                  Distributions ............................... 443
          4.9.9.  Coherence Effects ........................... 445
          4.9.10. Summary and Conclusions ..................... 447
          4.9.11. Assembly of Actin Filaments ................. 448
    4.10. Cell Division ....................................... 453
          4.10.1. Cell Division ............................... 453

Glossary ...................................................... 481

Index ......................................................... 499


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:28 2019. Размер: 14,291 bytes.
Посещение N 2312 c 13.10.2009