Multimodal surveillance: sensors, algorithms, and systems (Boston, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMultimodal surveillance: sensors, algorithms, and systems / ed. by Zhu Z., Huang T.S. - Boston: Artech House Publishers, 2007. - Boston; London: Artech House, 2007. - xviii, 428 p.: ill. - Ind.: p.413-428. - ISBN-10 1-59693-184-1; ISBN-13 978-1-59693-184-8
 

Оглавление / Contents
 
Foreword ....................................................... xv
Preface	 ...................................................... xvii

CHAPTER 1  Multimodal Surveillance: An Introduction ............. 1

1.1  Multimodal Surveillance: A Brief History ................... 1
1.2  Part I: Mutlimodal Sensors and Sensing Approaches .......... 3
     1.2.1  The ARL Multimodal Sensor (Chapter 2) ............... 3
     1.2.2  Design and Deployment of Visible-Thermal Biometric
            Surveillance Systems (Chapter 3) .................... 4
     1.2.3  LDV Sensing and Processing for Remote Hearing in
            a Multimodal Surveillance System (Chapter 4) ........ 4
     1.2.4  Sensor and Data Systems, Audio-Assisted Cameras,
            and Acoustic Doppler Sensors (Chapter 5) ............ 5
1.3  Part II: Multimodal Fusion Algorithms ...................... 5
     1.3.1  Audiovisual Speech Recognition (Chapter 6) .......... 5
     1.3.2  Multimodal Tracking for Smart Videoconferencing
            and Video Surveillance (Chapter 7) .................. 6
     1.3.3  Multimodal Biometrics Involving the Human Ear
            (Chapter 8) ......................................... 6
     1.3.4  Fusion of Face and Palmprint for Personal
            Identification Based on Ordinal Features
            (Chapter 9) ......................................... 7
     1.3.5  Human Identification Using Gait and Face
            (Chapter 10) ........................................ 7
1.4  Part III: Multimodal Systems and Issues .................... 7
     1.4.1  Sensor Fusion and Environmental Modeling for
            Multimodal Sentient Computing (Chapter 11) .......... 8
     1.4.2  An End-to-End eChronicling System for Mobile
            Human Surveillance (Chapter 12) ..................... 8
     1.4.3  Systems Issues in Distributed Multimodal
            Surveillance (Chapter 13) ........................... 9
     1.4.4  Multimodal Workbench for Automatic Surveillance
            Applications (Chapter 14) ........................... 9
     1.4.5  Automatic 3-D Modeling of Cities with Multimodal
            Air and Ground Sensors (Chapter 15) ................ 10
     1.4.6  Multimodal Biometrics Systems: Applications and
            Usage Scenarios (Chapter 16) ....................... 10
     1.4.7  SATware: Middleware for Sentient Spaces
            (Chapter 17) ....................................... 10
1.5  Concluding Remarks ........................................ 11
     References ................................................ 11

Part 1 Multimodal Sensors and Sensing Approaches

CHAPTER 2 The ARL Multimodal Sensor: A Research Tool for
          Target Signatu Collection, Algorithm Validation,
          and Emplacement Studies15

2.1  Introduction .............................................. 15
2.2  Multimodal Sensors ........................................ 15
     2.2.1  Enclosure .......................................... 16
     2.2.2  System Description ................................. 17
     2.2.3  Algorithms ......................................... 18
     2.2.4  Communications ..................................... 21
     2.2.5  Principles of Operation ............................ 22
2.3  Multimodal Sensor (MMS) System ............................ 22
     2.3.1  Multimodal Sensors ................................. 22
     2.3.2  Multimodal Gateway (mmGW) .......................... 23
     2.3.3  PDA ................................................ 24
2.4  Typical Deployment ........................................ 25
     2.4.1  Mission Planning ................................... 25
     2.4.2  Sensor Emplacement ................................. 26
     2.4.3  Survey and Test .................................... 27
     2.4.4  Operation .......................................... 28
     2.4.5  Sensor Management .................................. 28
2.5  Algorithm Development ..................................... 28
     2.5.1  Signature Collection ............................... 28
     2.5.2  Validation ......................................... 33
2.6  MMS Applications .......................................... 36
     2.6.1  Cave and Urban Assault (CUA) ....................... 36
     2.6.2  NATO LG-6 .......................................... 39
     2.6.3  C4ISR OTM .......................................... 40
2.7  Summary ................................................... 42
     References ................................................ 42

CHAPTER 3 Design and Deployment of Visible-Thermal Biometric
          Surveillance Systems ................................. 43

3.1  A Quick Tour Through the (Relevant) Electromagnetic
     Spectrum .................................................. 44
3.2  Why and When to Use a Fused Visible-Thermal System ........ 45
3.3  Optical Design ............................................ 49
3.4  Choice of Sensors ......................................... 53
3.5  Biometrically Enabled Visible-Thermal Surveillance ........ 55
3.6  Conclusions References .................................... 57

CHAPTER 4  LDV Sensing and Processing for Remote Hearing in
           a Multimodal Surveillance System .................... 59

4.1  Introduction .............................................. 59
4.2  Multimodal Sensors for Remote Hearing ..................... 60
     4.2.1  The LDV Sensor ..................................... 62
     4.2.2  The Infrared Camera ................................ 63
     4.2.3  The PTZ Camera ..................................... 64
4.3  LDV Hearing: Sensing and Processing ....................... 64
     4.3.1  Principle and Research Issues ...................... 64
     4.3.2  LDV Audio Signal Enhancement ....................... 67
4.4  Experiment Designs and Analysis ........................... 71
     4.4.1  Real Data Collections .............................. 72
     4.4.2  LDV Performance Analysis ........................... 77
     4.4.3  Enhancement Evaluation and Analysis ................ 83
4.5  Discussions on Sensor Improvements and Multimodal
     Integration ............................................... 85
     4.5.1  Further Research Issues in LDV Acoustic
            Detection .......................................... 85
     4.5.2  Multimodal Integration and Intelligent Targeting
            and Focusing ....................................... 86
4.6  Conclusions ............................................... 87
     Acknowledgments ........................................... 88
     References ................................................ 88

CHAPTER 5  Sensor and Data Systems, Audio-Assisted Cameras,
           and Acoustic Doppler Sensors ........................ 91

5.1  Introduction .............................................. 91
5.2  Audio-Assisted Cameras .................................... 91
     5.2.1  Prototype Setup .................................... 92
     5.2.2  Sound Recognition .................................. 93
     5.2.3  Location Recognition ............................... 94
     5.2.4  Everything Else .................................... 95
     5.2.5  Applications ....................................... 95
     5.2.6  Conclusion ......................................... 97
5.3  Acoustic Doppler Sensors for Gait Recognition ............. 97
     5.3.1  The Doppler Effect and Gait Measurement ............ 98
     5.3.2  The Acoustic Doppler Sensor for Gait
            Recognition ....................................... 100
     5.3.3  Signal Processing and Classification .............. 101
     5.3.4  Experiments ....................................... 102
     5.3.5  Discussion ........................................ 104
5.4  Conclusions .............................................. 105
     References ............................................... 105
     Multimodal Fusion Algorithms ............................. 107

CHAPTER 6  Audiovisual Speech Recognition ..................... 109

6.1  Introduction ............................................. 109
     6.1.1  Visual Features ................................... 110
     6.1.2  Fusion Strategy ................................... 112
6.2  Sensory Fusion Using Coupled Hidden Markov Models ........ 114
     6.2.1  Introduction to Coupled Hidden Markov Models ...... 115
     6.2.2  An Inference Algorithm for CHMM ................... 118
     6.2.3  Experimental Evaluation ........................... 120
6.3  Audiovisual Speech Recognition System Using CHMM ......... 124
     6.3.1  Implementation Strategy of CHMM ................... 125
     6.3.2  Audiovisual Speech Recognition Experiments ........ 127
     6.3.3  Large Vocabulary Continuous Speech Experiments .... 131
6.4  Conclusions .............................................. 138
     References ............................................... 139

CHAPTER 7  Multimodal Tracking for Smart Videoconferencing
           and Video Surveillance ............................. 141

7.1.  Introduction ............................................ 141
7.2  Automatic Calibration of Multimicrophone Setup ........... 143
     7.2.1  ML Estimator ...................................... 144
     7.2.2  Closed-Form Solution .............................. 146
     7.2.3  Estimator Bias and Variance ....................... 151
7.3  System Autocalibration Performance ....................... 156
     7.3.1  Calibration Signals ............................... 156
     7.3.2  Time Delay Estimation ............................. 156
     7.3.3  Speed of Sound .................................... 158
     7.3.4  Synchronization Error ............................. 158
     7.3.5  Testbed Setup and Results ......................... 158
7.4  The Tracking Algorithm ................................... 159
     7.4.1  Algorithm Overview ................................ 160
     7.4.2  Instantiation of the Particle Filter .............. 161
     7.4.3  Self-Calibration Within the Particle Filter
            Framework ......................................... 162
7.5  Setup and Measurements ................................... 163
     7.5.1  Video Modality .................................... 163
     7.5.2  Audio Modality .................................... 165
7.6  Tracking Performance ..................................... 166
     7.6.1  Synthetic Data .................................... 166
     7.6.2  Ultrasonic Sounds in Anechoic Room ................ 168
     7.6.3  Occlusion Handling ................................ 169
7.7  Conclusions .............................................. 171
     Acknowledgments .......................................... 171
     References ............................................... 171
     Appendix 7A Jacobian Computations ........................ 174
     Appendix 7B Converting the Distance Matrix to a Dot
                 Product Matrix ............................... 174

CHAPTER 8 Multimodal Biometrics Involving the Human Ear ....... 177

8.1  Introduction ............................................. 177
8.2  2-D and 3-D Ear Biometrics ............................... 178
     8.2.1  2-D Ear Biometrics ................................ 179
     8.2.2  3-D Ear Biometrics ................................ 183
8.3  Multibiometric Approaches to Ear Biometrics .............. 184
8.4  Ear Segmentation ......................................... 187
8.5  Conclusions .............................................. 188
     Acknowledgments .......................................... 188
     References ............................................... 189

CHAPTER 9  Fusion of Face and Palmprint for Personal
           Identification Based on Ordinal Features ........... 191

9.1  Introduction ............................................. 191
9.2  Ordinal Features ......................................... 193
     9.2.1  Local Ordinal Features ............................ 194
     9.2.2  Nonlocal Ordinal Features ......................... 195
9.3  Multimodal Biometric System Using Ordinal Features ....... 197
     9.3.1  Face Recognition .................................. 197
     9.3.2  Palmprint Recognition ............................. 199
     9.3.3  Fusion of Face and Palmprint ...................... 201
9.4  Experiments .............................................. 203
     9.4.1  Data Description .................................. 203
     9.4.2  Experimental Results and Evaluation ............... 204
9.5  Conclusions .............................................. 208
     Acknowledgments .......................................... 208
     References ............................................... 208

CHAPTER 10 Human Identification Using Gait and Face ........... 211

10.1 Introduction ............................................. 211
10.2 Framework for View-Invariant Gait Recognition ............ 213
10.3 Face Recognition from Video .............................. 214
10.4 Fusion Strategies ........................................ 215
10.5 Experimental Results ..................................... 216
10.6 Conclusion ............................................... 219
     Acknowledgments .......................................... 219
     References ............................................... 219
     Appendix 10A Mathematical Details ........................ 220
                  10A.1 Proof of (10.1) ....................... 220
                  10A.2 Proof of (10.2) ....................... 221

PART III Multimodal Systems and Issues ........................ 223

CHAPTER 11 Sensor Fusion and Environmental Modeling for
           Multimodal Sentient Computing ...................... 225

11.1 Sentient Computing—Systems and Sensors ................... 226
     11.1.1 Overview .......................................... 226
     11.1.2 The SPIRIT System ................................. 227
     11.1.3 Motivation and Challenges ......................... 228
     11.1.4 Sentient Computing World Model .................... 229
11.2 Related Work ............................................. 230
11.3 Sensor Fusion ............................................ 231
     11.3.1 Sensory Modalities and Correspondences ............ 231
     11.3.2 Vision Algorithms ................................. 233
     11.3.3 Fusion and Adaptation of Visual Appearance
            Models ............................................ 235
     11.3.4 Multihypothesis Bayesian Modality Fusion .......... 237
11.4 Environmental Modeling Using Sensor Fusion ............... 240
     11.4.1 Experimental Setup ................................ 240
     11.4.2 Enhanced Tracking and Dynamic State Estimation .... 241
     11.4.3 Modeling of the Office Environment ................ 250
11.5 Summary .................................................. 253
     Acknowledgments .......................................... 254
     References ............................................... 254

CHAPTER 12 An End-to-End eChronicling System for Mobile
           Human Surveillance ................................. 259

12.1 Introduction: Mobile Human Surveillance .................. 259
12.2 Related Work ............................................. 261
12.3 System Architecture and Overview ......................... 262
12.4 Event Management ......................................... 265
     12.4.1 Storage ........................................... 266
     12.4.2 Representation .................................... 266
     12.4.3 Retrieval ......................................... 266
12.5 Multimodal Analytics ..................................... 267
     12.5.1 Image Classification .............................. 267
     12.5.2 Face Detection and License Plate Recognition
            from Images ....................................... 269
     12.5.3 Audio and Speech Analytics ........................ 271
     12.5.4 Multimodal Integration ............................ 272
12.6 Interface: Analysis and Authoring/Reporting .............. 273
     12.6.1 Experiential Interface ............................ 277
12.7 Experiments and System Evaluation ........................ 278
     12.7.1 Image Tagging Performance and Observations ........ 279
12.8 Conclusions and Future Work .............................. 282
     Acknowledgments .......................................... 283
     References ............................................... 283

CHAPTER 13 Systems Issues in Distributed Multimodal
           Surveillance ....................................... 287

13.1 Introduction ............................................. 287
13.2 User Interfaces .......................................... 288
     13.2.1 UI-GUI: Understanding Images of Graphical User
            Interfaces ........................................ 291
     13.2.2 Visualization and Representation .................. 292
     13.2.3 Advanced UI-GUI Recognition Algorithm ............. 293
     13.2.4 Sensor Fusion with UI-GUI: GUI Is API ............. 294
     13.2.5 Formal User Study on UI-GUI ....................... 295
     13.2.6 Questionnaire Analysis ............................ 297
     13.2.7 User Interface System Issues Summary .............. 299
13.3 System Issues in Large-Scale Video Surveillance .......... 300
     13.3.1 Sensor Selection Issues ........................... 300
     13.3.2 Computation and Communication Issues .............. 302
     13.3.3 Software/Communication Architecture ............... 304
     13.3.4 System Issues Summary ............................. 308
            References ........................................ 308

CHAPTER 14 Multimodal Workbench for Automatic Surveillance
           Applications ....................................... 311

14.1 Introduction ............................................. 311
14.2 Related Work ............................................. 312
     14.2.1 Video-Based Approaches in Automated
            Surveillance Research ............................. 312
     14.2.2 Audio-Based Approaches in Automated Surveillance
            Research .......................................... 312
     14.2.3 Multimodal Audio-Video-Based Approaches ........... 313
     14.2.4 High-Level Interpretation ......................... 313
     14.2.5 Frameworks ........................................ 314
14.3 General Model Description for the Multimodal Framework ... 314
     14.3.1 XML Data Spaces ................................... 316
     14.3.2 Querying Data from XML Data Spaces ................ 323
     14.3.3 Comparison of the Multimodal Framework with
            iros Framework .................................... 324
     14.3.4 General Description Model of the Multimodal
            Workbench for the Automatic Surveillance
            Application ....................................... 326
14.4 The Automatic Surveillance Application ................... 332
     14.4.1 Goal .............................................. 332
     14.4.2 Experiment Setup .................................. 333
14.5 Conclusion ............................................... 335
     References ............................................... 335

CHAPTER 15 Automatic 3-D Modeling of Cities with Multimodal
           Air and Ground Sensors ............................. 339

15.1 Introduction ............................................. 339
15.2 Creating a Textured 3-D Airborne Model ................... 341
     15.2.1 Scan Point Resampling and DSM Generation .......... 341
     15.2.2 Processing the DSM ................................ 341
     15.2.3 Textured Mesh Generation .......................... 343
15.3 Ground-Based Acquisition and Modeling .................... 344
     15.3.1 Ground-Based Data Acquisition Via Drive-By
            Scanning .......................................... 345
     15.3.2 Creating an Edge Map and DTM ...................... 346
     15.3.3 Model Registration with MCL ....................... 347
     15.3.4 Processing Ground-Based Data ...................... 348
15.4 Model Merging ............................................ 350
15.5 Results .................................................. 352
15.6 Applications of 3-D Modeling to Surveillance ............. 359
15.7 Summary and Conclusions .................................. 360
     Acknowledgments .......................................... 360
     References ............................................... 360

CHAPTER 16 Multimodal Biometric Systems: Applications and
           Usage Scenarios .................................... 363

16.1 Introduction ............................................. 363
16.2 Multimodality and Multiple-Biometric Systems ............. 363
16.3 Multimodal Techniques Overview ........................... 364
     16.3.1 Normalization Techniques .......................... 364
     16.3.2 Fusion Techniques ................................. 366
     16.3.3 Biometric Gain Against Impostors .................. 367
16.4 Matcher Evaluation: Sample Collection and Processing ..... 368
     16.4.1 Overview .......................................... 368
     16.4.2 Data Collection ................................... 368
     16.4.3 Comparison Score Generation ....................... 369
     16.4.4 Fingerprint System 1 .............................. 369
     16.4.5 Fingerprint System 2 .............................. 371
     16.4.6 Fingerprint System 3 .............................. 371
     16.4.7 Face Recognition System 1 ......................... 371
     16.4.8 Face Recognition System 2 ......................... 371
     16.4.9 Iris Recognition System 1 ......................... 372
16.5 Data Subselection ........................................ 372
     16.5.1 Handling Null Scores .............................. 372
     16.5.2 Primary and Secondary Scores ...................... 373
16.6 Results: Comparison of Fusion Techniques ................. 374
16.7 Analysis: Matcher Weighting and User Weighting ........... 375
16.8 Analysis: Modified BGI and TAR, FAR ...................... 376
16.9 Results in Application-Specific Contexts ................. 379
     16.9.1 Biometric Verification and Identification ......... 379
     16.9.2 Legacy System Issues .............................. 381
     16.9.3 Effort Associated with Biometric Sample
            Acquisition ....................................... 382
     16.9.4 Response Time Requirements ........................ 382
     16.9.5 Quantization ...................................... 383
     16.9.6 Multipass Logic ................................... 383
     References ............................................... 385

CHAPTER 17 SATware: Middleware for Sentient Spaces ............ 387

17.1 Introduction ............................................. 387
17.2 Multimodal Sensor Data Processing: Notions and Issues .... 389
17.3 Related Work ............................................. 391
     17.3.1 Data Stream Processing ............................ 391
     17.3.2 Sensor Networks ................................... 391
     17.3.3 Multimedia Stream Processing ...................... 391
17.4 SATware Architecture ..................................... 392
     17.4.1 Coffee Room Scenario .............................. 393
     17.4.2 Stream Processing Model ........................... 394
     17.4.3 Virtual Sensors ................................... 397
     17.4.4 Operator Graph .................................... 397
     17.4.5 Physical Deployment ............................... 398
17.5 SATRuntime: The Stream Processing Run Time ............... 398
     17.5.1 Architecture ...................................... 399
17.6 SATLite Stream Query and Transformation Language ......... 400
17.7 SATDeployer: Operator Deployment in SATware .............. 402
17.8 Privacy .................................................. 403
17.9 Conclusions and Future Work .............................. 406

Acknowledgments ............................................... 407
References .................................................... 407
List of Contributors .......................................... 409
About the Editors ............................................. 411
Index ......................................................... 413


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:26 2019. Размер: 28,589 bytes.
Посещение N 2437 c 13.10.2009