Foreword ....................................................... xv
Preface ...................................................... xvii
CHAPTER 1 Multimodal Surveillance: An Introduction ............. 1
1.1 Multimodal Surveillance: A Brief History ................... 1
1.2 Part I: Mutlimodal Sensors and Sensing Approaches .......... 3
1.2.1 The ARL Multimodal Sensor (Chapter 2) ............... 3
1.2.2 Design and Deployment of Visible-Thermal Biometric
Surveillance Systems (Chapter 3) .................... 4
1.2.3 LDV Sensing and Processing for Remote Hearing in
a Multimodal Surveillance System (Chapter 4) ........ 4
1.2.4 Sensor and Data Systems, Audio-Assisted Cameras,
and Acoustic Doppler Sensors (Chapter 5) ............ 5
1.3 Part II: Multimodal Fusion Algorithms ...................... 5
1.3.1 Audiovisual Speech Recognition (Chapter 6) .......... 5
1.3.2 Multimodal Tracking for Smart Videoconferencing
and Video Surveillance (Chapter 7) .................. 6
1.3.3 Multimodal Biometrics Involving the Human Ear
(Chapter 8) ......................................... 6
1.3.4 Fusion of Face and Palmprint for Personal
Identification Based on Ordinal Features
(Chapter 9) ......................................... 7
1.3.5 Human Identification Using Gait and Face
(Chapter 10) ........................................ 7
1.4 Part III: Multimodal Systems and Issues .................... 7
1.4.1 Sensor Fusion and Environmental Modeling for
Multimodal Sentient Computing (Chapter 11) .......... 8
1.4.2 An End-to-End eChronicling System for Mobile
Human Surveillance (Chapter 12) ..................... 8
1.4.3 Systems Issues in Distributed Multimodal
Surveillance (Chapter 13) ........................... 9
1.4.4 Multimodal Workbench for Automatic Surveillance
Applications (Chapter 14) ........................... 9
1.4.5 Automatic 3-D Modeling of Cities with Multimodal
Air and Ground Sensors (Chapter 15) ................ 10
1.4.6 Multimodal Biometrics Systems: Applications and
Usage Scenarios (Chapter 16) ....................... 10
1.4.7 SATware: Middleware for Sentient Spaces
(Chapter 17) ....................................... 10
1.5 Concluding Remarks ........................................ 11
References ................................................ 11
Part 1 Multimodal Sensors and Sensing Approaches
CHAPTER 2 The ARL Multimodal Sensor: A Research Tool for
Target Signatu Collection, Algorithm Validation,
and Emplacement Studies15
2.1 Introduction .............................................. 15
2.2 Multimodal Sensors ........................................ 15
2.2.1 Enclosure .......................................... 16
2.2.2 System Description ................................. 17
2.2.3 Algorithms ......................................... 18
2.2.4 Communications ..................................... 21
2.2.5 Principles of Operation ............................ 22
2.3 Multimodal Sensor (MMS) System ............................ 22
2.3.1 Multimodal Sensors ................................. 22
2.3.2 Multimodal Gateway (mmGW) .......................... 23
2.3.3 PDA ................................................ 24
2.4 Typical Deployment ........................................ 25
2.4.1 Mission Planning ................................... 25
2.4.2 Sensor Emplacement ................................. 26
2.4.3 Survey and Test .................................... 27
2.4.4 Operation .......................................... 28
2.4.5 Sensor Management .................................. 28
2.5 Algorithm Development ..................................... 28
2.5.1 Signature Collection ............................... 28
2.5.2 Validation ......................................... 33
2.6 MMS Applications .......................................... 36
2.6.1 Cave and Urban Assault (CUA) ....................... 36
2.6.2 NATO LG-6 .......................................... 39
2.6.3 C4ISR OTM .......................................... 40
2.7 Summary ................................................... 42
References ................................................ 42
CHAPTER 3 Design and Deployment of Visible-Thermal Biometric
Surveillance Systems ................................. 43
3.1 A Quick Tour Through the (Relevant) Electromagnetic
Spectrum .................................................. 44
3.2 Why and When to Use a Fused Visible-Thermal System ........ 45
3.3 Optical Design ............................................ 49
3.4 Choice of Sensors ......................................... 53
3.5 Biometrically Enabled Visible-Thermal Surveillance ........ 55
3.6 Conclusions References .................................... 57
CHAPTER 4 LDV Sensing and Processing for Remote Hearing in
a Multimodal Surveillance System .................... 59
4.1 Introduction .............................................. 59
4.2 Multimodal Sensors for Remote Hearing ..................... 60
4.2.1 The LDV Sensor ..................................... 62
4.2.2 The Infrared Camera ................................ 63
4.2.3 The PTZ Camera ..................................... 64
4.3 LDV Hearing: Sensing and Processing ....................... 64
4.3.1 Principle and Research Issues ...................... 64
4.3.2 LDV Audio Signal Enhancement ....................... 67
4.4 Experiment Designs and Analysis ........................... 71
4.4.1 Real Data Collections .............................. 72
4.4.2 LDV Performance Analysis ........................... 77
4.4.3 Enhancement Evaluation and Analysis ................ 83
4.5 Discussions on Sensor Improvements and Multimodal
Integration ............................................... 85
4.5.1 Further Research Issues in LDV Acoustic
Detection .......................................... 85
4.5.2 Multimodal Integration and Intelligent Targeting
and Focusing ....................................... 86
4.6 Conclusions ............................................... 87
Acknowledgments ........................................... 88
References ................................................ 88
CHAPTER 5 Sensor and Data Systems, Audio-Assisted Cameras,
and Acoustic Doppler Sensors ........................ 91
5.1 Introduction .............................................. 91
5.2 Audio-Assisted Cameras .................................... 91
5.2.1 Prototype Setup .................................... 92
5.2.2 Sound Recognition .................................. 93
5.2.3 Location Recognition ............................... 94
5.2.4 Everything Else .................................... 95
5.2.5 Applications ....................................... 95
5.2.6 Conclusion ......................................... 97
5.3 Acoustic Doppler Sensors for Gait Recognition ............. 97
5.3.1 The Doppler Effect and Gait Measurement ............ 98
5.3.2 The Acoustic Doppler Sensor for Gait
Recognition ....................................... 100
5.3.3 Signal Processing and Classification .............. 101
5.3.4 Experiments ....................................... 102
5.3.5 Discussion ........................................ 104
5.4 Conclusions .............................................. 105
References ............................................... 105
Multimodal Fusion Algorithms ............................. 107
CHAPTER 6 Audiovisual Speech Recognition ..................... 109
6.1 Introduction ............................................. 109
6.1.1 Visual Features ................................... 110
6.1.2 Fusion Strategy ................................... 112
6.2 Sensory Fusion Using Coupled Hidden Markov Models ........ 114
6.2.1 Introduction to Coupled Hidden Markov Models ...... 115
6.2.2 An Inference Algorithm for CHMM ................... 118
6.2.3 Experimental Evaluation ........................... 120
6.3 Audiovisual Speech Recognition System Using CHMM ......... 124
6.3.1 Implementation Strategy of CHMM ................... 125
6.3.2 Audiovisual Speech Recognition Experiments ........ 127
6.3.3 Large Vocabulary Continuous Speech Experiments .... 131
6.4 Conclusions .............................................. 138
References ............................................... 139
CHAPTER 7 Multimodal Tracking for Smart Videoconferencing
and Video Surveillance ............................. 141
7.1. Introduction ............................................ 141
7.2 Automatic Calibration of Multimicrophone Setup ........... 143
7.2.1 ML Estimator ...................................... 144
7.2.2 Closed-Form Solution .............................. 146
7.2.3 Estimator Bias and Variance ....................... 151
7.3 System Autocalibration Performance ....................... 156
7.3.1 Calibration Signals ............................... 156
7.3.2 Time Delay Estimation ............................. 156
7.3.3 Speed of Sound .................................... 158
7.3.4 Synchronization Error ............................. 158
7.3.5 Testbed Setup and Results ......................... 158
7.4 The Tracking Algorithm ................................... 159
7.4.1 Algorithm Overview ................................ 160
7.4.2 Instantiation of the Particle Filter .............. 161
7.4.3 Self-Calibration Within the Particle Filter
Framework ......................................... 162
7.5 Setup and Measurements ................................... 163
7.5.1 Video Modality .................................... 163
7.5.2 Audio Modality .................................... 165
7.6 Tracking Performance ..................................... 166
7.6.1 Synthetic Data .................................... 166
7.6.2 Ultrasonic Sounds in Anechoic Room ................ 168
7.6.3 Occlusion Handling ................................ 169
7.7 Conclusions .............................................. 171
Acknowledgments .......................................... 171
References ............................................... 171
Appendix 7A Jacobian Computations ........................ 174
Appendix 7B Converting the Distance Matrix to a Dot
Product Matrix ............................... 174
CHAPTER 8 Multimodal Biometrics Involving the Human Ear ....... 177
8.1 Introduction ............................................. 177
8.2 2-D and 3-D Ear Biometrics ............................... 178
8.2.1 2-D Ear Biometrics ................................ 179
8.2.2 3-D Ear Biometrics ................................ 183
8.3 Multibiometric Approaches to Ear Biometrics .............. 184
8.4 Ear Segmentation ......................................... 187
8.5 Conclusions .............................................. 188
Acknowledgments .......................................... 188
References ............................................... 189
CHAPTER 9 Fusion of Face and Palmprint for Personal
Identification Based on Ordinal Features ........... 191
9.1 Introduction ............................................. 191
9.2 Ordinal Features ......................................... 193
9.2.1 Local Ordinal Features ............................ 194
9.2.2 Nonlocal Ordinal Features ......................... 195
9.3 Multimodal Biometric System Using Ordinal Features ....... 197
9.3.1 Face Recognition .................................. 197
9.3.2 Palmprint Recognition ............................. 199
9.3.3 Fusion of Face and Palmprint ...................... 201
9.4 Experiments .............................................. 203
9.4.1 Data Description .................................. 203
9.4.2 Experimental Results and Evaluation ............... 204
9.5 Conclusions .............................................. 208
Acknowledgments .......................................... 208
References ............................................... 208
CHAPTER 10 Human Identification Using Gait and Face ........... 211
10.1 Introduction ............................................. 211
10.2 Framework for View-Invariant Gait Recognition ............ 213
10.3 Face Recognition from Video .............................. 214
10.4 Fusion Strategies ........................................ 215
10.5 Experimental Results ..................................... 216
10.6 Conclusion ............................................... 219
Acknowledgments .......................................... 219
References ............................................... 219
Appendix 10A Mathematical Details ........................ 220
10A.1 Proof of (10.1) ....................... 220
10A.2 Proof of (10.2) ....................... 221
PART III Multimodal Systems and Issues ........................ 223
CHAPTER 11 Sensor Fusion and Environmental Modeling for
Multimodal Sentient Computing ...................... 225
11.1 Sentient Computing—Systems and Sensors ................... 226
11.1.1 Overview .......................................... 226
11.1.2 The SPIRIT System ................................. 227
11.1.3 Motivation and Challenges ......................... 228
11.1.4 Sentient Computing World Model .................... 229
11.2 Related Work ............................................. 230
11.3 Sensor Fusion ............................................ 231
11.3.1 Sensory Modalities and Correspondences ............ 231
11.3.2 Vision Algorithms ................................. 233
11.3.3 Fusion and Adaptation of Visual Appearance
Models ............................................ 235
11.3.4 Multihypothesis Bayesian Modality Fusion .......... 237
11.4 Environmental Modeling Using Sensor Fusion ............... 240
11.4.1 Experimental Setup ................................ 240
11.4.2 Enhanced Tracking and Dynamic State Estimation .... 241
11.4.3 Modeling of the Office Environment ................ 250
11.5 Summary .................................................. 253
Acknowledgments .......................................... 254
References ............................................... 254
CHAPTER 12 An End-to-End eChronicling System for Mobile
Human Surveillance ................................. 259
12.1 Introduction: Mobile Human Surveillance .................. 259
12.2 Related Work ............................................. 261
12.3 System Architecture and Overview ......................... 262
12.4 Event Management ......................................... 265
12.4.1 Storage ........................................... 266
12.4.2 Representation .................................... 266
12.4.3 Retrieval ......................................... 266
12.5 Multimodal Analytics ..................................... 267
12.5.1 Image Classification .............................. 267
12.5.2 Face Detection and License Plate Recognition
from Images ....................................... 269
12.5.3 Audio and Speech Analytics ........................ 271
12.5.4 Multimodal Integration ............................ 272
12.6 Interface: Analysis and Authoring/Reporting .............. 273
12.6.1 Experiential Interface ............................ 277
12.7 Experiments and System Evaluation ........................ 278
12.7.1 Image Tagging Performance and Observations ........ 279
12.8 Conclusions and Future Work .............................. 282
Acknowledgments .......................................... 283
References ............................................... 283
CHAPTER 13 Systems Issues in Distributed Multimodal
Surveillance ....................................... 287
13.1 Introduction ............................................. 287
13.2 User Interfaces .......................................... 288
13.2.1 UI-GUI: Understanding Images of Graphical User
Interfaces ........................................ 291
13.2.2 Visualization and Representation .................. 292
13.2.3 Advanced UI-GUI Recognition Algorithm ............. 293
13.2.4 Sensor Fusion with UI-GUI: GUI Is API ............. 294
13.2.5 Formal User Study on UI-GUI ....................... 295
13.2.6 Questionnaire Analysis ............................ 297
13.2.7 User Interface System Issues Summary .............. 299
13.3 System Issues in Large-Scale Video Surveillance .......... 300
13.3.1 Sensor Selection Issues ........................... 300
13.3.2 Computation and Communication Issues .............. 302
13.3.3 Software/Communication Architecture ............... 304
13.3.4 System Issues Summary ............................. 308
References ........................................ 308
CHAPTER 14 Multimodal Workbench for Automatic Surveillance
Applications ....................................... 311
14.1 Introduction ............................................. 311
14.2 Related Work ............................................. 312
14.2.1 Video-Based Approaches in Automated
Surveillance Research ............................. 312
14.2.2 Audio-Based Approaches in Automated Surveillance
Research .......................................... 312
14.2.3 Multimodal Audio-Video-Based Approaches ........... 313
14.2.4 High-Level Interpretation ......................... 313
14.2.5 Frameworks ........................................ 314
14.3 General Model Description for the Multimodal Framework ... 314
14.3.1 XML Data Spaces ................................... 316
14.3.2 Querying Data from XML Data Spaces ................ 323
14.3.3 Comparison of the Multimodal Framework with
iros Framework .................................... 324
14.3.4 General Description Model of the Multimodal
Workbench for the Automatic Surveillance
Application ....................................... 326
14.4 The Automatic Surveillance Application ................... 332
14.4.1 Goal .............................................. 332
14.4.2 Experiment Setup .................................. 333
14.5 Conclusion ............................................... 335
References ............................................... 335
CHAPTER 15 Automatic 3-D Modeling of Cities with Multimodal
Air and Ground Sensors ............................. 339
15.1 Introduction ............................................. 339
15.2 Creating a Textured 3-D Airborne Model ................... 341
15.2.1 Scan Point Resampling and DSM Generation .......... 341
15.2.2 Processing the DSM ................................ 341
15.2.3 Textured Mesh Generation .......................... 343
15.3 Ground-Based Acquisition and Modeling .................... 344
15.3.1 Ground-Based Data Acquisition Via Drive-By
Scanning .......................................... 345
15.3.2 Creating an Edge Map and DTM ...................... 346
15.3.3 Model Registration with MCL ....................... 347
15.3.4 Processing Ground-Based Data ...................... 348
15.4 Model Merging ............................................ 350
15.5 Results .................................................. 352
15.6 Applications of 3-D Modeling to Surveillance ............. 359
15.7 Summary and Conclusions .................................. 360
Acknowledgments .......................................... 360
References ............................................... 360
CHAPTER 16 Multimodal Biometric Systems: Applications and
Usage Scenarios .................................... 363
16.1 Introduction ............................................. 363
16.2 Multimodality and Multiple-Biometric Systems ............. 363
16.3 Multimodal Techniques Overview ........................... 364
16.3.1 Normalization Techniques .......................... 364
16.3.2 Fusion Techniques ................................. 366
16.3.3 Biometric Gain Against Impostors .................. 367
16.4 Matcher Evaluation: Sample Collection and Processing ..... 368
16.4.1 Overview .......................................... 368
16.4.2 Data Collection ................................... 368
16.4.3 Comparison Score Generation ....................... 369
16.4.4 Fingerprint System 1 .............................. 369
16.4.5 Fingerprint System 2 .............................. 371
16.4.6 Fingerprint System 3 .............................. 371
16.4.7 Face Recognition System 1 ......................... 371
16.4.8 Face Recognition System 2 ......................... 371
16.4.9 Iris Recognition System 1 ......................... 372
16.5 Data Subselection ........................................ 372
16.5.1 Handling Null Scores .............................. 372
16.5.2 Primary and Secondary Scores ...................... 373
16.6 Results: Comparison of Fusion Techniques ................. 374
16.7 Analysis: Matcher Weighting and User Weighting ........... 375
16.8 Analysis: Modified BGI and TAR, FAR ...................... 376
16.9 Results in Application-Specific Contexts ................. 379
16.9.1 Biometric Verification and Identification ......... 379
16.9.2 Legacy System Issues .............................. 381
16.9.3 Effort Associated with Biometric Sample
Acquisition ....................................... 382
16.9.4 Response Time Requirements ........................ 382
16.9.5 Quantization ...................................... 383
16.9.6 Multipass Logic ................................... 383
References ............................................... 385
CHAPTER 17 SATware: Middleware for Sentient Spaces ............ 387
17.1 Introduction ............................................. 387
17.2 Multimodal Sensor Data Processing: Notions and Issues .... 389
17.3 Related Work ............................................. 391
17.3.1 Data Stream Processing ............................ 391
17.3.2 Sensor Networks ................................... 391
17.3.3 Multimedia Stream Processing ...................... 391
17.4 SATware Architecture ..................................... 392
17.4.1 Coffee Room Scenario .............................. 393
17.4.2 Stream Processing Model ........................... 394
17.4.3 Virtual Sensors ................................... 397
17.4.4 Operator Graph .................................... 397
17.4.5 Physical Deployment ............................... 398
17.5 SATRuntime: The Stream Processing Run Time ............... 398
17.5.1 Architecture ...................................... 399
17.6 SATLite Stream Query and Transformation Language ......... 400
17.7 SATDeployer: Operator Deployment in SATware .............. 402
17.8 Privacy .................................................. 403
17.9 Conclusions and Future Work .............................. 406
Acknowledgments ............................................... 407
References .................................................... 407
List of Contributors .......................................... 409
About the Editors ............................................. 411
Index ......................................................... 413
|