Lapidus M. In search of the Riemann zeros: strings, fractal membranes and noncommutative spacetimes (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLapidus M. In search of the Riemann zeros: strings, fractal membranes and noncommutative spacetimes. - Providence: American Mathematical Society, 2008. - xxix, 558 p.: ill. - Bibliogr.: p.453-489. - Conv.: p.491. - Ind. of symb.: p.493-502. - Sub. ind.: p.503-550. - Auth. ind.: p.551-558. - ISBN 978-0-8218-4222-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgements ............................................. xvii
Credits ..................................................... xxiii
Overview ...................................................... xxv
About the Cover .............................................. xxix

Chapter 1. Introduction ......................................... 1

1.1. Arithmetic and Spacetime Geometry .......................... 1
1.2. Riemannian, Quantum and Noncommutative Geometry ............ 2
1.3. String Theory and Spacetime Geometry ....................... 3
1.4. The Riemann Hypothesis and the Geometry of the Primes ...... 6
1.5. Motivations, Objectives and Organization of This Book ...... 9

Chapter 2. String Theory on a Circle and T-Duality: Analogy
           with the Riemann Zeta Function ...................... 21

2.1. Quantum Mechanical Point-Particle on a Circle ............. 24
2.2. String Theory on a Circle: T-Duality and the Existence
     of a Fundamental Length ................................... 26
     2.2.1. String Theory on a Circle .......................... 29
     2.2.2. Circle Duality (T-Duality for Circular
            Spacetimes) ........................................ 34
     2.2.3. T-Duality and the Existence of a Fundamental
            Length ............................................. 43
2.3. Noncommutative Stringy Spacetimes and T-Duality ........... 45
     2.3.1. Target Space Duality and Noncommutative Geometry ... 48
     2.3.2. Noncommutative Stringy Spacetimes: Fock Spaces,
            Vertex Algebras and Chiral Dirac Operators ......... 55
2.4. Analogy with the Riemann Zeta Function: Functional
     Equation and T-Duality .................................... 66
     2.4.1. Key Properties of the Riemann Zeta Function:
            Euler Product and Functional Equation .............. 67
     2.4.2. The Functional Equation, T-Duality and
            the Riemann Hypothesis ............................. 75
2.5. Notes ..................................................... 80

Chapter 3. Fractal Strings and Fractal Membranes ............... 89

3.1. Fractal Strings: Geometric Zeta Functions, Complex
     Dimensions and Self-Similarity ............................ 91
     3.1.1. The Spectrum of a Fractal String .................. 102
3.2. Fractal (and Prime) Membranes: Spectral Partition
     Functions and Euler Products ............................. 103
     3.2.1. Prime Membranes ................................... 104
     3.2.2. Fractal Membranes and Euler Products .............. 109
3.3. Fractal Membranes vs.  Self-Similarity: Self-Similar
     Membranes ................................................ 123
     3.3.1. Partition Functions Viewed as Dynamical Zeta
            Functions ......................................... 138
3.4. Notes .................................................... 145

Chapter 4. Noncommutative Models of Fractal Strings: Fractal
           Membranes and Beyond ............................... 155

4.1. Connes' Spectral Triple for Fractal Strings .............. 157
4.2. Fractal Membranes and the Second Quantization of
     Fractal Strings .......................................... 160
     4.2.1. An Alternative Construction of Fractal
            Membranes ......................................... 165
4.3. Fractal Membranes and Noncommutative Stringy
     Spacetimes ............................................... 170
4.4. Towards a Cohomological and Spectral Interpretation
     of (Dynamical) Complex Dimensions ........................ 174
     4.4.1. Fractal Membranes and Quantum Deformations:
            A Possible Connection with Haran's Real and
            Finite Primes ..................................... 183
4.5. Notes .................................................... 183

Chapter 5. Towards an 'Arithmetic Site': Moduli Spaces of
           Fractal Strings and Membranes ...................... 197

5.1. The Set of Penrose Tilings: Quantum Space as a Quotient
     Space .................................................... 200
5.2. The Moduli Space of Fractal Strings: A Natural
     Receptacle for Zeta Functions ............................ 205
5.3. The Moduli Space of Fractal Membranes: A Quantized
     Moduli Space of Fractal Strings .......................... 208
5.4. Arithmetic Site, Frobenius Flow and the Riemann
     Hypothesis ............................................... 215
     5.4.1.  The Moduli Space of Fractal Strings and
             Deningers's Arithmetic Site ...................... 217
     5.4.2.  The Moduli Space of Fractal Membranes and
             (Noncommutative) Modular Flow vs. Arithmetic
             Site and Frobenius Flow .......................... 219
     5.4.2a. Factors and Their Classification ................. 220
     5.4.2b. Modular Theory of von Neumann Algebras ........... 223
     5.4.2c. Type III Factors: Discrete vs. Continuous
             Flows ............................................ 227
     5.4.2d. Modular Flows and the Riemann Hypothesis ......... 231
     5.4.2e. Towards an Extended Moduli Space and Flow ........ 236
5.5. Flows of Zeros and Zeta Functions: A Dynamical
     Interpretation of the Riemann Hypothesis ................. 241
     5.5.1.  Introduction ..................................... 241
     5.5.2.  Expected Properties of the Flows of Zeros and
             Zeta Functions ................................... 243
     5.5.3.  Analogies with Other Geometric, Analytical or
             Physical Flows ................................... 254
     5.5.3a. Singular Potentials, Feynman Integrals and
             Renormalization Flow ............................. 255
     5.5.3b. KMS-Flow and Deformation of Polya-Hilbert
             Operators ........................................ 261
     5.5.3c. Ricci Flow and Geometric Symmetrization
             (vs. Modular Flow and Arithmetic
             Symmetrization) .................................. 270
     5.5.3d. Towards a Noncommutative, Arithmetic KP-Flow ..... 293
5.6. Notes .................................................... 294

Appendix A. Vertex Algebras ................................... 315
     A.l. Definition of Vertex Algebras: Translation and
          Scaling Operators ................................... 315
     A.2. Basic Properties of Vertex Algebras ................. 318
     A.3. Notes ............................................... 321

Appendix B. The Weil Conjectures and the Riemann Hypothesis ... 325
     B.l. Varieties Over Finite Fields and Their Zeta
          Functions ........................................... 325
     B.2. Zeta Functions of Curves Over Finite Fields and
          the Riemann Hypothesis .............................. 335
     B.3. The Weil Conjectures for Varieties Over Finite
          Fields .............................................. 338
     B.4. Notes ............................................... 344

Appendix C. The Poisson Summation Formula, with Applications .. 347
     C.l. General PSF for Dual Lattices: Scalar Identity and
          Distributional Form ................................. 348
     C.2. Application: Modularity of Theta Functions .......... 350
     C.3. Key Special Case: Self-Dual PSF ..................... 352
     C.4. Proof of the General Poisson Summation Formula ...... 356
     C.5. Modular Forms and Their Hecke L-Series .............. 358
          C.5.1. Modular Forms and Cusp Forms ................. 358
          C.5.2. Hecke Operators and Hecke Forms .............. 361
          C.5.3. Hecke L-Series of a Modular Form ............. 362
          C.5.4. Modular Forms of Higher Level and Their
                 L-Functions .................................. 366
     C.6. Notes ............................................... 371

Appendix D. Generalized Primes and Beurling Zeta Functions .... 373
     D.l. Generalized Primes fig.3 and Integers fig.3 ................ 373
     D.2. Beurling Zeta Functions ζp .......................... 374
     D.3. Analogues of the Prime Number Theorem ............... 375
     D.4. Analytic Continuation and a Generalized
          Functional Equation for ζp .......................... 378
     D.5. Partial Orderings on Generalized Integers ........... 385
     D.6. Notes ............................................... 387

Appendix E. The Selberg Class of Zeta Functions ............... 389
     E.l. Definition of the Selberg Class ..................... 390
     E.2. The Selberg Conjectures ............................. 393
     E.3. Selected Consequences ............................... 394
     E.4. The Selberg Class, Artin ISeries and Automorphic
          L-Functions: Langlands' Reciprocity Laws ............ 398
          E.4.1.  Selberg's Orthonormality Conjecture and
                  Artin L-Series: Artin's Holomorphy
                  Conjecture .................................. 399
          E.4.2.  Selberg's Orthonormality Conjecture and
                  Automorphic Representations: Langlands'
                  Reciprocity Conjecture ...................... 400
          E.4.2a. Adeles кA and Linear Group GLn{kA) .......... 400
          E.4.2b. Automorphic Representations and
                  Automorphic L-Series ........................ 401
     E.5. Notes ............................................... 407

Appendix F. The Noncommutative Space of Penrose Tilings and
            Quasicrystals ..................................... 411
     F.l. Combinatorial Coding of Penrose Tilings, and
          Consequences ........................................ 412
     F.2. Groupoid C*-Algebra and the Noncommutative Space
          of Penrose Tilings .................................. 416
          F.2.1. Groupoids: Definition and Examples ........... 416
          F.2.2. The Groupoid Convolution Algebra ............. 420
          F.2.3. Generalization:   Groupoids,  Quasicrystals
                 and Noncommutative Spaces .................... 424
     F.3. Quasicrystals: Dynamical Hull and the
          Noncommutative Brillouin Zone ....................... 427
          F.3.1. Mathematical Quasicrystals and Their
                 Generalizations .............................. 427
          F.3.2. Translation Dynamical System: The Hull of
                 a Quasicrystal ............................... 437
          F.3.3. Typical Properties of Atomic
                 Configurations ............................... 444
          F.3.4. The Noncommutative Brillouin Zone and
                 Groupoid C* -Algebra of a Quasicrystal ....... 446
     F.4. Notes ............................................... 449

Bibliography .................................................. 453

Conventions ................................................... 491

Index of Symbols .............................................. 493

Subject Index ................................................. 503

Author Index .................................................. 551


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:26 2019. Размер: 15,226 bytes.
Посещение N 2648 c 13.10.2009