Klamroth K. Single-facility location problems with barriers (New York, 2002). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKlamroth K. Single-facility location problems with barriers. - New York: Springer, 2002. - xi, 201 p.: ill. - (Springer series in operations researcc). - Ref.: p.183-197. - Ind.: p.199-201. - ISBN 0-387-95498-8
 

Оглавление / Contents
 
Preface ......................................................... v

I.   Introduction and General Results ........................... 1

1.  Measuring Distances ......................................... 3
    1.1.  Norms and Metrics ..................................... 4
    1.2.  General Gauges and Polyhedral Distance Functions ...... 6
    1.3.  Polyhedral Gauges in R2 ............................... 8
    1.4.  Relations Between Block Norms and the Manhattan
          Norm ................................................. 12

2.  Shortest Paths in the Presence of Barriers ................. 15
    2.1.  Shortest Paths and the Concept of Visibility ......... 16
    2.2.  Optimality Conditions for Smooth Barriers ............ 20
    2.3.  Piecewise Linear Paths for Polyhedral Barriers ....... 30
    2.4.  Shortest Paths in the Plane with Polyhedral
          Barriers ............................................. 32
    2.5.  Shortest Paths and Polyhedral Gauges in the Plane .... 35

3.  Location Problems with Barriers: Basic Concepts and
    Literature Review .......................................... 39
    3.1.  Location Problems Without Barriers ................... 39
    3.2.  Introducing Barriers to Location Modeling ............ 42
    3.3.  The Visibility Graph ................................. 47
   
4.  Bounds for Location Problems with Barriers ................. 49
    4.1.  Lower Bounds ......................................... 50
    4.2.  Upper Bounds ......................................... 52

II.  Solution Methods for Specially Shaped Barriers ............ 55

5.  Planar Location Problems with Polyhedral Barriers .......... 57
    5.1.  Interrelations Between Barrier Problems and
          Unconstrained Location Problems ...................... 58
    5.2.  The Iterative Convex Hull ............................ 67
    5.3.  Algorithmic Consequences ............................. 70
    5.4.  Mixed-Integer Programming Formulations ............... 74
    5.5.  Weber Objective Functions ............................ 77
    5.6.  Multifacility Weber Problems ......................... 79
    5.7.  Related Problems ..................................... 82

6.  Location Problems with a Circular Barrier .................. 85
    6.1.  Properties of the Objective Function ................. 86
    6.2.  Algorithms and Heuristics ............................ 96

7.  Weber Problems with a Line Barrier ........................ 101
    7.1.  Line Barriers with One Passage ...................... 108
    7.2.  Line Barriers with Two Passages ..................... 109
    7.3.  Line Barriers with N Passages, N > 2 ................ 112
    7.4.  Example ............................................. 115

III. Solution Methods for Special Distance and
     Objective Functions ...................................... 119

8.  Weber Problems with Block Norms ........................... 121
    8.1.  Constructing a Finite Dominating Set ................ 123
    8.2.  Generalization to Polyhedral Gauges ................. 131

9.  Center Problems with the Manhattan Metric ................. 135
    9.1.  A Cell Decomposition of the Feasible Region ......... 136
    9.2.  Constructing a Dominating Set ....................... 139
    9.3.  Algorithmic Consequences ............................ 147
    9.4.  Extension to Block Norms ............................ 150

10. Multicriteria Location Problems with Polyhedral
    Barriers .................................................. 153
    10.1. Properties of the Objective Function ................ 155
    10.2. Methodology for Bicriteria Problems ................. 159
    10.3. An Example Problem with a Line Barrier .............. 165

IV.  Application .............................................. 171

11. Location with Barriers Put to Work in Practice ............ 173
    11.1. Problem Formulation ................................. 173
    11.2. Mathematical Model: A Weber Problem with a Line
          Barrier ............................................. 176
    11.3. Solution ............................................ 178
    11.4. Alternative Models .................................. 180

References .................................................... 183

Index ......................................................... 199


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:26 2019. Размер: 8,142 bytes.
Посещение N 2419 c 13.10.2009