International series in quantitative marketing; 18 (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBlattberg R.C. Database marketing: analyzing and managing customers / Blattberg R.C., Kim B.D., Neslin S.A. - New York: Springer, 2008. - xxiv, 871 p.: ill. - (International series in quantitative marketing; 18). - Ref.: p.801-845. - Auth. ind.: p.847-870. - ISBN 978-0-387-72578-9
 

Оглавление / Contents
 
Preface ....................................................... vii

Part I.   Strategic Issues

1.  Introduction ................................................ 3
    1.1.  What Is Database Marketing? ........................... 3
          1.1.1.  Defining Database Marketing ................... 4
          1.1.2.  Database Marketing, Direct Marketing, and
                  Customer Relationship Management .............. 5
    1.2.  Why Is Database Marketing Becoming More Important? .... 6
    1.3.  The Database Marketing Process ........................ 8
    1.4.  Organization of the Book ............................. 12

2.  Why Database Marketing? .................................... 13
    2.1.  Enhancing Marketing Productivity ..................... 13
          2.1.1.  The Basic Argument ........................... 13
          2.1.2.  The Marketing Productivity Argument in
                  Depth ........................................ 15
          2.1.3.  Evidence for the Marketing Productivity
                  Argument ..................................... 19
          2.1.4.  Assessment ................................... 22
    2.2.  Creating and Enhancing Customer Relationships ........ 23
          2.2.1.  The Basic Argument ........................... 23
          2.2.2.  Customer Relationships and the Role of
                  Database Marketing ........................... 23
          2.2.3.  Evidence for the Argument that Database
                  Marketing Enhances Customer Relationships .... 28
          2.2.4.  Assessment ................................... 31
    2.3.  Creating Sustainable Competitive Advantage ........... 32
          2.3.1.  The Basic Argument ........................... 32
          2.3.2.  Evolution of the Sustainable Competitive
                  Advantage Argument ........................... 32
          2.3.3  Assessment .................................... 44
    2.4  Summary ............................................... 45

3.  Organizing for Database Marketing .......................... 47
    3.1.  The Customer-Centric Organization .................... 47
    3.2.  Database Marketing Strategy .......................... 48
          3.2.1.  Strategies for Implementing DBM .............. 49
          3.2.2.  Generating a Competitive Advantage ........... 51
          3.2.3.  Summary ...................................... 51
    3.3.  Customer Management: The Structural Foundation
          of the Customer-Centric Organization ................. 52
          3.3.1.  What Is Customer Management? ................. 52
          3.3.2.  The Motivation for Customer Management ....... 53
          3.3.3.  Forming Customer Portfolios .................. 54
          3.3.4.  Is Customer Management the Wave of the
                  Future?  ..................................... 55
          3.3.5.  Acquisition and Retention
                  Departmentalization .......................... 56
    3.4.  Processes for Managing Information: Knowledge
          Management ........................................... 57
          3.4.1.  The Concept .................................. 57
          3.4.2.  Does Effective Knowledge Management Enhance
                  Performance? ................................. 58
          3.4.3.  Creating Knowledge ........................... 59
          3.4.4.  Codifying Knowledge .......................... 60
          3.4.5.  Transferring Knowledge ....................... 61
          3.4.6.  Using Knowledge .............................. 62
          3.4.7.  Designing a Knowledge Management System ...... 63
          3.4.8.  Issues and Challenges ........................ 65
    3.5.  Compensation and Incentives .......................... 65
          3.5.1.  Theory ....................................... 66
          3.5.2.  Empirical Findings ........................... 67
          3.5.3.  Summary ...................................... 69
    3.6.  People ............................................... 69
          3.6.1.  Providing Appropriate Support ................ 69
          3.6.2.  Intra-Firm Coordination ...................... 70

4.  Customer Privacy and Database Marketing .................... 75
    4.1.  Background ........................................... 75
          4.1.1.  Customer Privacy Concerns and Their
                  Consequences for Database Marketers .......... 75
          4.1.2.  Historical Perspective ....................... 78
    4.2.  Customer Attitudes Toward Privacy .................... 79
          4.2.1.  Segmentation Schemes ......................... 79
          4.2.2.  Impact of Attitudes on Database Marketing
                  Behaviors .................................... 81
          4.2.3.  International Differences in Privacy
                  Concerns ..................................... 82
    4.3.  Current Practices Regarding Privacy .................. 85
          4.3.1  Privacy Policies .............................. 85
          4.3.2.  Collecting Data .............................. 87
          4.3.3.  The Legal Environment ........................ 88
    4.4.  Potential Solutions to Privacy Concerns .............. 91
          4.4.1.  Software Solutions ........................... 91
          4.4.2.  Regulation ................................... 91
          4.4.3.  Permission Marketing ......................... 94
          4.4.4.  Customer Data Ownership ...................... 96
          4.4.5.  Focus on Trust ............................... 97
          4.4.6.  Top Management Support ....................... 98
          4.4.7.  Privacy as Profit Maximization ............... 99
    4.5.  Summary and Avenues for Research .................... 100

Part II.  Customer Lifetime Value (LTV)

5.  Customer Lifetime Value: Fundamentals ..................... 105
    5.1.  Introduction ........................................ 105
          5.1.1.  Definition of Lifetime Value of a
                  Customer .................................... 106
          5.1.2.  A Simple Example of Calculating Customer
                  Lifetime Value .............................. 106
    5.2.  Mathematical Formulation of LTV ..................... 108
    5.3.  The Two Primary LTV Models:  Simple Retention
          and Migration ....................................... 109
          5.3.1.  Simple Retention Models ..................... 109
          5.3.2.  Migration Models ............................ 114
    5.4.  LTV Models that Include Unobserved Customer
          Attrition ........................................... 121
    5.5.  Estimating Revenues ................................. 130
          5.5.1.  Constant Revenue per Period Model ........... 130
          5.5.2.  Trend Models ................................ 130
          5.5.3.  Causal Models ............................... 130
          5.5.4.  Stochastic Models of Purchase Rates and
                  Volume ...................................... 131

6.  Issues in Computing Customer Lifetime Value ............... 133
    6.1.  Introduction ........................................ 133
    6.2.  Discount Rate and Time Horizon ...................... 134
          6.2.1.  Opportunity Cost of Capital Approach ........ 134
          6.2.2.  Discount  Rate Based on the
                  Source-of-Risk Approach ..................... 140
    6.3.  Customer Portfolio Management ....................... 142
    6.4.  Cost Accounting Issues .............................. 145
          6.4.1.  Activity-Based Costing (ABC) ................ 145
          6.4.2.  Variable Costs and Allocating Fixed
                  Overhead .................................... 148
    6.5.  Incorporating Marketing Response .................... 154
    6.6.  Incorporating Externalities ......................... 158

7.  Customer Lifetime Value Applications ...................... 161
    7.1.  Using LTV to Target Customer Acquisition ............ 161
    7.2.  Using LTV to Guide Customer Reactivation
          Strategies .......................................... 163
    7.3.  Using SMC's Model to Value Customers ................ 164
    7.4.  A Case Example of Applying LTV Modeling ............. 168
    7.5.  Segmentation Methods Using Variants of LTV .......... 172
          7.5.1.  Customer Pyramids ........................... 172
          7.5.2.  Creating Customer Portfolios Using LTV
                  Measures .................................... 174
    7.6.  Drivers of the Components of LTV .................... 175
    7.7.  Forcasting Potential LTV ............................ 176
    7.8.  Valuing a Firm's Customer Base ...................... 178

Part III. Database Marketing Tools: The Basics

8.  Sources of Data ........................................... 183
    8.1.  Introduction ........................................ 183
    8.2.  Types of Data for Describing Customers .............. 184
          8.2.1.  Customer Identification Data ................ 184
          8.2.2.  Demographic Data ............................ 186
          8.2.3.  Psychographic or Lifestyle Data ............. 186
          8.2.4.  Transaction Data ............................ 188
          8.2.5.  Marketing Action Data ....................... 190
          8.2.6.  Other Types of Data ......................... 191
    8.3.  Sources of Customer Information ..................... 191
          8.3.1.  Internal (Secondary) Data ................... 192
          8.3.2.  External (Secondary) Data ................... 193
          8.3.3.  Primary Data ................................ 211
    8.4.  The Destination Marketing Company ................... 213

9.  Test Design and Analysis .................................. 215
    9.1.  The Importance of Testing ........................... 215
    9.2.  To Test or Not to Test .............................. 216
          9.2.1.  Value of Information ........................ 216
          9.2.2.  Assessing Mistargeting Costs ................ 221
    9.3.  Sampling Techniques ................................. 223
          9.3.1.  Probability Versus Nonprobability
                  Sampling .................................... 224
          9.3.2.  Simple Random Sampling ...................... 224
          9.3.3.  Systematic Random-Sampling .................. 225
          9.3.4.  Other Sampling Techniques ................... 226
    9.4.  Determining the Sample Size ......................... 227
          9.4.1.  Statistical Approach ........................ 227
          9.4.2.  Decision Theoretic Approach ................. 229
    9.5.  Test Designs ........................................ 235
          9.5.1  Single Factor Experiments .................... 235
          9.5.2.  Multifactor Experiments: Full Factorials .... 238
          9.5.3.  Multifactor Experiments: Orthogonal
                  Designs ..................................... 241
          9.5.4.  Quasi-Experiments ........................... 243

10. The Predictive Modeling Process ........................... 245
    10.1. Predictive Modelling and the Quest for Marketing
          Productivity ........................................ 245
    10.2. The Predictive Modeling Process: Overview ........... 248
    10.3. The Process in Detail ............................... 248
          10.3.1. Define the Problem .......................... 248
          10.3.2. Prepare the Data ............................ 250
          10.3.3. Estimate the Model .......................... 256
          10.3.4. Evaluate the Model .......................... 259
          10.3.5. Select Customers to Target .................. 267
    10.4. A Predictive Modeling Example ....................... 275
    10.5. Long-Term Considerations ............................ 280
          10.5.1. Preaching to the Choir ...................... 280
          10.5.2. Model Shelf Life and Selectivity Bias ....... 280
          10.5.3. Learning from the Interpretation of
                  Predictive Models ........................... 284
          10.5.4. Predictive Modeling Is a Process
                  to Be Managed ............................... 285
    10.6. Future Research ..................................... 286

Part IV.  Database Marketing Tools: Statistical Techniques

11. Statistical Issues in Predictive Modeling ................. 291
    11.1. Economic Justification for Building a Statistical
          Model ............................................... 292
    11.2. Selection of Variables and Models ................... 293
          11.2.1. Variable Selection .......................... 293
          11.2.2. Variable Transformations .................... 299
    11.3. Treatment of Missing Variables ...................... 301
          11.3.1. Casewise Deletion ........................... 302
          11.3.2. Pairwise Deletion ........................... 302
          11.3.3. Single Imputation ........................... 302
          11.3.4. Multiple Imputation ......................... 303
          11.3.5. Data Fusion ................................. 305
          11.3.6. Missing Variable Dummies .................... 307
    11.4. Evaluation of Statistical Models .................... 308
          11.4.1. Dividing the Sample into the Calibration
                  and Validation Sample ....................... 309
          11.4.2. Evaluation Criteria ......................... 312
    11.5. Concluding Note: Evolutionary Model-Building ........ 321

12. RFM Analysis .............................................. 323
    12.1. Introduction ........................................ 323
    12.2. The Basics of the RFM Model ......................... 324
          12.2.1. Definition of Recency, Frequency, and
                  Monetary Value .............................. 324
          12.2.2. RFM for Segment-Level Prediction ............ 326
    12.3. Breakeven Analysis: Determining the Cutoff Point .... 327
          12.3.1. Profit Maximizing Cutoff Response
                  Probability ................................. 328
          12.3.2. Heterogeneous Order Amounts ................. 329
    12.4. Extending the RFM Model ............................. 331
          12.4.1. Treating the RFM Model as ANOVA ............. 331
          12.4.2. Alternative Response Models Without
                  Discretization .............................. 334
          12.4.3. A Stochastic RFM Model by Colombo and
                  Jiang (1999) ................................ 336

13. Market Basket Analysis .................................... 339
    13.1. Introduction ........................................ 339
    13.2. Benefits for Marketers .............................. 340
    13.3. Deriving Market Basket Association Rules ............ 341
          13.3.1. Setup of a Market Basket Problem ............ 341
          13.3.2. Deriving "Interesting" Association Rules .... 342
          13.3.3. Zhang (2000) Measures of Association
                  and Dissociation ............................ 345
    13.4. Issues in Market Basket Analysis .................... 346
          13.4.1. Using Taxonomies to Overcome the
                  Dimensionality Problem ...................... 346
          13.4.2. Association Rules for More than Two Items ... 347
          13.4.3. Adding Virtual Items to Enrich the Quality
                  of the Market Basket Analysis ............... 348
          13.4.4. Adding Temporal Component to the Market
                  Basket Analysis ............................. 349
    13.5. Conclusion .......................................... 350

14. Collaborative Filtering ................................... 353
    14.1. Introduction ........................................ 353
    14.2. Memory-Based Methods ................................ 354
          14.2.1. Computing Similarity Between Users .......... 356
          14.2.2. Evaluation Metrics .......................... 360
    14.3. Model-Based Methods ................................. 363
          14.3.1. The Cluster Model ........................... 364
          14.3.2. Item-Based Collaborative Filtering .......... 364
          14.3.3. A Bayesian Mixture Model by Chien and
                  George (1999) ............................... 366
          14.3.4. A Hierarchical Bayesian Approach by
                  Ansari et al. (2000) ........................ 366
    14.4. Current Issues in Collaborative Filtering ........... 368
          14.4.1. Combining Content-Based Information
                  Filtering with Collaborative Filtering ...... 368
          14.4.2. Implicit Ratings ............................ 372
          14.4.3. Selection Bias .............................. 374
          14.4.4. Recommendations Across Categories ........... 375

15. Discrete Dependent Variables and Duration Models .......... 377
    15.1. Binary Response Model ............................... 378
          15.1.1. Linear Probability Model .................... 378
          15.1.2. Binary Logit (or Logistic Regression) and
                  Probit Models ............................... 379
          15.1.3. Logistic Regression with Rare Events Data ... 382
          15.1.4. Discriminant Analysis ....................... 385
    15.2. Multinomial Response Model .......................... 386
    15.3. Models for Count Data ............................... 388
          15.3.1. Poisson Regression .......................... 388
          15.3.2. Negative Binomial Regression ................ 389
    15.4. Censored Regression (Tobit) Models and Extensions ... 390
    15.5. Time Duration (Hazard) Models ....................... 392
          15.5.1. Characteristics of Duration Data ............ 393
          15.5.2. Analysis of Duration Data Using a
                  Classical Linear Regression ................. 394
          15.5.3. Hazard Models ............................... 395
          15.5.4. Incorporating Covariates into the Hazard
                  Function .................................... 398

16. Cluster Analysis .......................................... 401
    16.1. Introduction ........................................ 401
    16.2. The Clustering Process .............................. 402
          16.2.1. Selecting Clustering Variables .............. 403
          16.2.2. Similarity Measures ......................... 404
          16.2.3. Clustering Methods .......................... 408
          16.2.4. The Number of Clusters ...................... 418
    16.3. Applying Cluster Analysis ........................... 419
          16.3.1. Interpreting the Results .................... 419
          16.3.2. Targeting the Desired Cluster ............... 420

17. Decision Trees ............................................ 423
    17.1. Introduction ........................................ 423
    17.2. Fundamentals of Decision Trees ...................... 424
    17.3. Finding the Best Splitting Rule ..................... 427
          17.3.1. Gini Index of Diversity ..................... 427
          17.3.2. Entropy and Information Theoretic
                  Measures .................................... 429
          17.3.3. Chi-Square Test ............................. 430
          17.3.4. Other Splitting Rules ....................... 432
    17.4. Finding the Right Sized Tree ........................ 432
          17.4.1. Pruning ..................................... 432
          17.4.2. Other Methods for Finding the Right Sized
                  Tree ........................................ 434
    17.5. Other Issues in Decision Trees ...................... 435
          17.5.1. Multivariate Splits ......................... 436
          17.5.2. Cost Considerations ......................... 436
          17.5.3. Finding an Optimal Tree ..................... 436
    17.6. Application to a Direct Mail Offer .................. 437
    17.7. Strengths and Weaknesses of Decision Trees .......... 438

18. Artificial Neural Networks ................................ 443
    18.1. Introduction ........................................ 443
          18.1.1. Historical Remarks .......................... 443
          18.1.2. ANN Applications in Database Marketing ...... 444
          18.1.3. Strengths and Weaknesses .................... 445
    18.2. Models of Neurons ................................... 447
          18.3. Multilayer Perceptrons ........................ 450
          18.3.1. Network Architecture ........................ 451
          18.3.2. Back-Propagation Algorithm .................. 454
          18.3.3. Application to Credit Scoring ............... 455
          18.3.4. Optimal Number of Units in the Hidden
                  Layer, Learning-Rate, and Momentum
                  Parameters .................................. 457
          18.3.5. Stopping Criteria ........................... 457
          18.3.6. Feature (Input Variable) Selection .......... 458
          18.3.7. Assessing the Importance of the Input
                  Variables ................................... 459
    18.4. Radial-Basis Function Networks ...................... 460
          18.4.1. Background .................................. 460
          18.4.2. A Curve-Fitting (Approximation) Problem ..... 461
          18.4.3. Application Example ......................... 463

19. Machine Learning .......................................... 465
    19.1. Introduction ........................................ 465
    19.2. 1-Rule .............................................. 466
    19.3. Rule Induction by Covering Algorithms ............... 468
          19.3.1. Covering Algorithms and Decision Trees ...... 469
          19.3.2. PRISM ....................................... 470
          19.3.3. A Probability Measure for Rule Evaluation
                  and the INDUCT Algorithm .................... 474
    19.4. Instance-Based Learning ............................. 477
          19.4.1. Strengths and Limitations ................... 478
          19.4.2. A Brief Description of an Instance-Based
                  Learning Algorithm .......................... 478
          19.4.3. Selection of Exemplars ...................... 479
          19.4.4. Attribute Weights ........................... 481
    19.5. Genetic Algorithms .................................. 481
    19.6. Bayesian Networks ................................... 484
    19.7. Support Vector Machines ............................. 486
    19.8. Combining Multiple Models: Committee Machines ....... 489
          19.8.1. Bagging ..................................... 490
          19.8.2. Boosting .................................... 491
          19.8.3. Other Committee Machines .................... 492

Part V.   Customer Management

20. Acquiring Customers ....................................... 495
    20.1. Introduction ........................................ 495
    20.2. The Fundamental Equation of Customer Equity ......... 496
    20.3. Acquisition Costs ................................... 497
    20.4. Strategies for Increasing Number of Customers
          Acquired ............................................ 499
          20.4.1. Increasing Market Size ...................... 499
          20.4.2. Increasing Marketing Acquisition
                  Expenditures ................................ 500
          20.4.3. Changing the Shape of the Acquisition
                  Curve ....................................... 501
          20.4.4. Using Lead Products ......................... 503
          20.4.5. Acquisition Pricing and Promotions .......... 504
    20.5. Developing a Customer Acquisition Program ........... 505
          20.5.1. Framework ................................... 505
          20.5.2. Segmentation, Targeting and Positioning
                  (STP) ....................................... 506
          20.5.3. Product/Service Offering .................... 507
          20.5.4. Acquisition Targeting ....................... 508
          20.5.5. Targeting Methods for Customer
                  Acquisition ................................. 510
    20.6. Research Issues in Acquisition Marketing ............ 514

21. Cross-Selling and Up-Selling .............................. 515
    21.1. The Strategy ........................................ 515
    21.2. Cross-Selling Models ................................ 516
          21.2.1. Next-Product-to-Buy Models .................. 517
          21.2.2. Next-Product-to-Buy Models with Explicit
                  Consideration of Purchase Timing ............ 529
          21.2.3. Next-Product-to-Buy with Timing and
                  Response .................................... 534
    21.3. Up-Selling .......................................... 537
          21.3.1. A Data Envelope Analysis Model .............. 538
          21.3.2. A Stochastic Frontier Model ................. 540
    21.4. Developing an Ongoing Cross-Selling Effort .......... 541
          21.4.1. Process Overview ............................ 541
          21.4.2. Strategy .................................... 541
          21.4.3. Data Collection ............................. 544
          21.4.4. Analytics ................................... 544
          21.4.5. Implementation .............................. 546
          21.4.6. Evaluation .................................. 546
    21.5. Research Needs ...................................... 547

22. Frequency Reward Programs ................................. 549
    22.1. Definition and Motivation ........................... 549
    22.2. How Frequency Reward Programs Influence Customer
          Behavior ............................................ 550
          22.2.1. Mechanisms for Increasing Sales ............. 550
          22.2.2. What We Know About How Customers Respond
                  to Reward Programs .......................... 552
    22.3. Do Frequency Reward Programs Increase Profits in
          a Competitive Environment? .......................... 562
    22.4. Frequency Reward Program Design ..................... 565
          22.4.1. Design Decisions ............................ 565
          22.4.2. Infrastructure .............................. 565
          22.4.3. Enrollment Procedures ....................... 566
          22.4.4. Reward Schedule ............................. 566
          22.4.5. The Reward .................................. 569
          22.4.6. Personalized Marketing ...................... 571
          22.4.7. Partnering .................................. 572
          22.4.8. Monitor and Evaluate ........................ 573
    22.5. Frequency Reward Program Examples ................... 573
          22.5.1. Harrah's Entertainment1 ..................... 573
          22.5.2. The UK Supermarket Industry: Nectar
                  Versus Clubcard ............................. 574
          22.5.3. Cingular Rollover Minutes ................... 576
          22.5.4. Hilton Hotels ............................... 576
    22.6. Research Needs ...................................... 578

23. Customer Tier Programs .................................... 579
    23.1. Definition and Motivation ........................... 579
    23.2. Designing Customer Tier Programs .................... 581
          23.2.1. Overview .................................... 581
          23.2.2. Review Objectives ........................... 582
          23.2.3. Create the Customer Database ................ 582
          23.2.4. Define Tiers ................................ 582
          23.2.5. Determine Acquisition Potential for
                  Each Tier ................................... 584
          23.2.6. Determine Development Potential for
                  Each Tier ................................... 585
          23.2.7. Allocate Funds to Tiers ..................... 588
          23.2.8. Design Tier-Specific Programs ............... 595
          23.2.9. Implement and Evaluate ...................... 596
    23.3. Examples of Customer Tier Programs .................. 597
          23.3.1. Bank One (Hartfeil 1996) .................... 597
          23.3.2. Royal Bank of Canada (Rasmusson 1999) ....... 598
          23.3.3. Thomas Cook Travel (Rasmusson 1999) ......... 598
          23.3.4. Canadian Grocery Store Chain (Grant and
                  Schlesinger 1995) ........................... 598
          23.3.5. Major US Bank (Rust et al. 2000) ............ 599
          23.3.6. Viking Office Products (Miller 2001) ........ 600
          23.3.7. Swedbank (Storbacka and Luukinen 1994,
                  see also Storbacka 1993) .................... 600
    23.4. Risks in Implementing Customer Tier Programs ........ 601
    23.5. Future Research Requirements ........................ 604

24. Churn Management .......................................... 607
    24.1. The Problem ......................................... 607
    24.2. Factors that Cause Churn ............................ 611
    24.3. Predicting Customer Churn ........................... 615
          24.3.1. Single Future Period Models ................. 616
          24.3.2. Time Series Models .......................... 622
    24.4. Managerial Approaches to Reducing Churn ............. 625
          24.4.1. Overview .................................... 625
          24.4.2. A Framework for Proactive Churn
                  Management .................................. 627
          24.4.3. Implementing a Proactive  Churn
                  Management Program .......................... 631
    24.5. Future Research ..................................... 633

25. Multichannel Customer Management .......................... 635
    25.1. The Emergence of Multichannel Customer Management ... 636
          25.1.1. The Push Toward Multichannel ................ 636
          25.1.2. The Pull of Multichannel .................... 636
    25.2. The Multichannel Customer ........................... 637
          25.2.1. A Framework for Studying the Customer's
                  Channel Choice Decision ..................... 637
          25.2.2. Characteristics of Multichannel Customers ... 638
          25.2.3. Determinants of Channel Choice .............. 641
          25.2.4. Models of Customer Channel Migration ........ 647
          25.2.5. Research Shopping ........................... 652
          25.2.6. Channel Usage and Customer Loyalty .......... 655
          25.2.7. The Impact of Acquisition Channelon
                  Customer Behavior ........................... 655
          25.2.8. The Impact of Channel Introduction on
                  Firm Performance ............................ 657
    25.3. Developing Multichannel Strategies .................. 659
          25.3.1. Framework for the Multichannel Design
                  Process ..................................... 659
          25.3.2. Analyze Customers ........................... 659
          25.3.3. Design Channels ............................. 661
          25.3.4. Implementation .............................. 667
          25.3.5. Evaluation .................................. 668
    25.4. Industry Examples ................................... 672
          25.4.1. Retail "Best Practice" (Crawford 2002) ...... 672
          25.4.2. Waters Corporation (CRM ROI Review 2003) .... 672
          25.4.3. The Pharmaceutical Industry (Boehm 2002) .... 673
          25.4.4. Circuit City (Smith 2006; Wolf 2006) ........ 674
          25.4.5. Summary ..................................... 674

26. Acquisition and Retention Management ...................... 675
    26.1. Introduction ........................................ 675
    26.2. Modeling Acquisition and Retention .................. 676
          26.2.1. The Blattberg and Deighton (1996) Model ..... 676
          26.2.2. Cohort Models ............................... 682
          26.2.3. Type II Tobit Models ........................ 682
          26.2.4. Competitive Models .......................... 687
          26.2.5. Summary: Lessons on How to Model
                  Acquisition and Retention ................... 689
    26.3. Optimal Acquisition and Retention Spending .......... 690
          26.3.1. Optimizing the Blattberg/Deighton Model
                  with No Budget Constraint ................... 691
          26.3.2. The Relationship Among Acquisition and
                  Retention Costs, LTV, and Optimal
                  Spending: If Acquisition "Costs" Exceed
                  Retention "Costs", Should the Firm Focus
                  on Retention? ............................... 695
          26.3.3. Optimizing the Budget-Constrained
                  Blattberg/Deighton Model .................... 698
          26.3.4. Optimizing a Multi-Period, Budget-
                  Constrained Cohort Model .................... 702
          26.3.5. Optimizing the Reinartz et al. (2005)
                  Tobit Model ................................. 705
          26.3.6. Summary: When Should We Spend More on
                  Acquisition or Retention? ................... 706
    26.4. Acquisition and Retention Budget Planning ........... 708
          26.4.1. The Customer Management Marketing Budget
                  (CMMB) ...................................... 708
          26.4.2. Implementation Issues ....................... 709
    26.5. Acquisition and Retention Strategy: An Overall
          Framework ........................................... 710

Part VI.  Managing the Marketing Mix

27. Designing Database Marketing Communications ............... 715
    27.1. The Planning Process ................................ 715
    27.2. Setting the Overall Plan ............................ 716
          27.2.1. Objectives .................................. 716
          27.2.2. Strategy .................................... 717
          27.2.3. Budget ...................................... 717
          27.2.4. Summary ..................................... 718
    27.3. Developing Copy ..................................... 719
          27.3.1. Creative Strategy ........................... 719
          27.3.2. The Offer ................................... 723
          27.3.3. The Product ................................. 726
          27.3.4. Personalizing Multiple Components of the
                  Communication ............................... 736
    27.4. Selecting Media ..................................... 737
          27.4.1. Optimization ................................ 737
          27.4.2. Integrated Marketing Communications ......... 739
    27.5. Evaluating Communications Programs .................. 739

28. Multiple Campaign Management .............................. 743
    28.1. Overview ............................................ 743
    28.2. Dynamic Response Phenomena .......................... 744
          28.2.1. Wear-in, Wear-out, and Forgetting ........... 744
          28.2.2. Overlap ..................................... 749
          28.2.3. Purchase Acceleration,  Loyalty, and
                  Price Sensitivity Effects ................... 750
          28.2.4. Including Wear-in, Wear-out, Forgetting,
                  Overlap, Acceleration, and Loyalty .......... 752
    28.3. Optimal Contact Models .............................. 753
          28.3.1. A Promotions Model (Ching et al. 2004) ...... 755
          28.3.2. Using a Decision Tree Response Model
                  (Simester et al. 2006) ...................... 756
          28.3.3. Using a Hazard Response Model
                  (Goniil et al. 2000) ........................ 758
          28.3.4. Using a Hierarchical Bayes Model (Rust and
                  Verhoef 2005) ............................... 760
          28.3.5. Incorporating Customer and Firm Dynamic
                  Rationality (Goniil and Shi 1998) ........... 763
          28.3.6. Incorporating Inventory Management
                  (Bitran and Mondschein 1996) ................ 765
          28.3.7. Incorporating a Variety of Catalogs
                  (Campbell et al. 2001) ...................... 768
          28.3.8. Multiple Catalog Mailings (Eisner et al.
                  2003, 2004) ................................. 772
          28.3.9. Increasing Response to Online Panel
                  Surveys (Neslin et al. 2007) ................ 774
    28.4. Summary ............................................. 777

29. Pricing ................................................... 781
    29.1. Overview - Customer-based Pricing ................... 781
    29.2. Customer Pricing when Customers Can Purchase
          Multiple One-Time Products from the Firm ............ 783
          29.2.1. Case 1: Only Product 1 Is Purchased ......... 786
          29.2.2. Case 2: Two Product Purchase Model with
                  Lead Product 1 .............................. 786
    29.3. Pricing the Same Products/Services to Customers
          over Two Periods .................................... 788
          29.3.1. Pessimistic Case: R < q - Expectations of
                  Quality are Less than Actual Quality ........ 789
          29.3.2. Optimistic Case: R = q - Expectations of
                  Quality are Greater than Actual Quality ..... 790
          29.3.3. Research Issues   790
    29.4. Acquisition and Retention Pricing Using the
          Customer Equity Model ............................... 791
    29.5. Pricing to Recapture Customers ...................... 794
    29.6. Pricing Add-on Sales ................................ 796
    29.7. Price Discrimination Through Database Targeting
          Models .............................................. 797

References .................................................... 801

Author Index .................................................. 847

Subject Index ................................................. 859


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:26 2019. Размер: 42,777 bytes.
Посещение N 1747 c 13.10.2009