Barreira L. Nonuniform hyperbolicity: dynamics of systems with nonzero Lyapunov exponents (Cambridge; New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBarreira L. Nonuniform hyperbolicity: dynamics of systems with nonzero Lyapunov exponents / Barreira L., Pesin Y. - Cambridge; New York: Cambridge University Press, 2007. - xiv, 513 p. - Bibliogr.: p.491-500. - Ind.: p.501-513. - ISBN 978-0-521-83258-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface page ................................................. xiii
Introduction .................................................... 1

Part I Linear Theory

1  The Concept of Nonuniform Hyperbolicity ...................... 9
   1.1  Motivation .............................................. 9
   1.2  Basic Setting .......................................... 13
        1.2.1  Exponential Splitting and Nonuniform
               Hyperbolicity ................................... 13
        1.2.2  Tempered Equivalence ............................ 14
        1.2.3  The Continuous-Time Case ........................ 15
   1.3  Lyapunov Exponents Associated to Sequences
        of Matrices ............................................ 16
        1.3.1  Definition of the Lyapunov Exponent ............. 16
        1.3.2  Forward and Backward Regularity ................. 18
        1.3.3  A Criterion of Forward Regularity for
               Triangular Matrices ............................. 25
        1.3.4  The Lyapunov-Perron Regularity .................. 31
   1.4  Notes .................................................. 33
2  Lyapunov Exponents for Linear Extensions .................... 35
   2.1  Cocycles over Dynamical Systems ........................ 35
        2.1.1  Cocycles and Linear Extensions .................. 35
        2.1.2  Cohomology and Tempered Equivalence ............. 37
        2.1.3  Examples and Basic Constructions ................ 39
   2.2  Hyperbolicity of Cocycles .............................. 41
        2.2.1  Hyperbolic Cocycles ............................. 41
        2.2.2  Regular Sets of Hyperbolic Cocycles ............. 43
        2.2.3  Cocycles over Topological Spaces ................ 46
   2.3  Lyapunov Exponents for Cocycles ........................ 46
   2.4  Spaces of Cocycles ..................................... 50
3  Regularity of Cocycles ...................................... 53
   3.1  The Lyapunov-Perron regularity ......................... 53
   3.2  Lyapunov Exponents and Basic Constructions ............. 57
   3.3  Lyapunov Exponents and Hyperbolicity ................... 59
   3.4  The Multiplicative Ergodic Theorem ..................... 64
        3.4.1  One-Dimensional Cocycles and Birkhoff's
               Ergodic Theorem ................................. 64
        3.4.2  Oseledets' Proof of the Multiplicative
               Ergodic Theorem ................................. 65
        3.4.3  Lyapunov Exponents and Subadditive Ergodic
               Theorem ......................................... 69
        3.4.4  Raghunathan's Proof of the Multiplicative
               Ergodic Theorem ................................. 70
   3.5  Tempering Kernels and the Reduction Theorems ........... 75
        3.5.1  Lyapunov Inner Products ......................... 76
        3.5.2  The Oseledets-Pesin Reduction Theorem ........... 77
        3.5.3  A Tempering Kernel .............................. 80
        3.5.4  Zimmer's Amenable Reduction ..................... 82
        3.5.5  The Case of Noninvertible Cocycles .............. 82
   3.6  More Results on Lyapunov-Perron Regularity ............. 83
        3.6.1  Higher-Rank Abelian Actions ..................... 83
        3.6.2  The Case of Flows ............................... 88
        3.6.3  Nonpositively Curved Spaces ..................... 91
   3.7  Notes .................................................. 94
4  Methods for Estimating Exponents ............................ 95
   4.1  Cone and Lyapunov Function Techniques .................. 95
        4.1.1  Lyapunov Functions .............................. 96
        4.1.2  A Criterion for Nonvanishing Lyapunov
               Exponents ....................................... 98
        4.1.3  Invariant Cone Families ........................ 101
   4.2  Cocycles with Values in the Symplectic Group .......... 102
   4.3  Monotone Operators and Lyapunov Exponents ............. 106
        4.3.1  The Algebra of Potapov ......................... 106
        4.3.2  Lyapunov Exponents for J-Separated Cocycles .... 108
        4.3.3  The Lyapunov Spectrum for Conformally
               Hamiltonian Systems ............................ 112
   4.4  A Remark on Applications of Cone Techniques ........... 116
   4.5  Notes ................................................. 117
5  The Derivative Cocycle ..................................... 118
   5.1  Smooth Dynamical Systems and the Derivative
        Cocycle ............................................... 118
   5.2  Nonuniformly Hyperbolic Diffeomorphisms ............... 119
   5.3  Holder Continuity of Invariant Distributions .......... 122
   5.4  Lyapunov Exponent and Regularity of the Derivative
        Cocycle ............................................... 125
   5.5  On the Notion of Dynamical Systems with Nonzero
        Lyapunov Exponents .................................... 129
   5.6  Regular Neighborhoods ................................. 130
   5.7  Cocycles over Smooth Flows ............................ 133
   5.8  Semicontinuity of Lyapunov Exponents .................. 134

Part II Examples and Foundations of the Nonlinear Theory

6  Examples of Systems with Hyperbolic Behavior ............... 139
   6.1  Uniformly Hyperbolic Sets ............................. 139
        6.1.1  Hyperbolic Sets for Maps ....................... 139
        6.1.2  Hyperbolic Sets for Flows ...................... 143
        6.1.3  Linear Horseshoes .............................. 144
        6.1.4  Nonlinear Horseshoes ........................... 147
   6.2  Nonuniformly Hyperbolic Perturbations of
        Horseshoes ............................................ 152
        6.2.1  Slow Expansion Near a Fixed Point .............. 152
        6.2.2  Further Modifications .......................... 154
   6.3  Diffeomorphisms with Nonzero Lyapunov Exponents on
        Surfaces .............................................. 158
        6.3.1  Analytic Nonuniformly Hyperbolic
               Diffeomorphisms ................................ 159
        6.3.2  A Nonuniformly Hyperbolic Diffeomorphism on
               the Sphere ..................................... 163
        6.3.3  Nonuniformly Hyperbolic Diffeomorphisms on
               Compact Surfaces ............................... 164
        6.3.4  A Nonuniformly Hyperbolic Diffeomorphism of
               the Torus ...................................... 166
   6.4  Pseudo-Anosov Maps .................................... 167
        6.4.1  Definitions and Basic Properties ............... 168
        6.4.2  Smooth Models of Pseudo-Anosov Maps ............ 171
   6.5  Nonuniformly Hyperbolic Flows ......................... 182
   6.6  Some Other Examples ................................... 185
   6.7  Notes ................................................. 187
7  Stable Manifold Theory ..................................... 188
   7.1  The Stable Manifold Theorem ........................... 188
   7.2  Nonuniformly Hyperbolic Sequences of
        Diffeomorphisms ....................................... 191
   7.3  The Hadamard-Perron Theorem: Hadamard's Method ........ 192
        7.3.1  Invariant Cone Families ........................ 193
        7.3.2  Admissible Manifolds ........................... 196
        7.3.3  Existence of (s, y)- and (u, y)-Manifolds ...... 200
        7.3.4  Invariant Families of Local Manifolds .......... 203
        7.3.5  Higher Differentiability of Invariant
               Manifolds ...................................... 205
   7.4  The Graph Transform Property .......................... 206
   7.5  The Hadamard-Perron Theorem: Perron's Method .......... 207
        7.5.1  An Abstract Version of the Stable Manifold
               Theorem ........................................ 207
        7.5.2  Smoothness of Local Manifolds .................. 215
   7.6  Local Unstable Manifolds .............................. 220
   7.7  The Stable Manifold Theorem for Flows ................. 221
   7.8  Сl Pathological Behavior: Pugh's Example .............. 221
   7.9  Notes ................................................. 225
8  Basic Properties of Stable and Unstable Manifolds .......... 226
   8.1  Characterization and Sizes of Local Stable
        Manifolds ............................................. 226
   8.2  Global Stable and Unstable Manifolds .................. 229
   8.3  Foliations with Smooth Leaves ......................... 231
   8.4  Filtrations of Intermediate Local and Global
        Manifolds ............................................. 232
   8.5  The Lipschitz Property of Intermediate Foliations ..... 236
   8.6  The Absolute Continuity Property ...................... 240
        8.6.1  Absolute Continuity of Holonomy Maps ........... 242
        8.6.2  Absolute Continuity of Local Stable
               Manifolds ...................................... 251
        8.6.3  Foliation That Is Not Absolutely Continuous .... 254
        8.6.4  The Jacobian of the Holonomy Map ............... 255
   8.7  Notes ................................................. 257

Part III Ergodic Theory of Smooth and SRB Measures

9  Smooth Measures ............................................ 261
   9.1  Ergodic Components .................................... 261
   9.2  Local Ergodicity ...................................... 266
   9.3  The s- and u-Measures ................................. 282
   9.4  The Leaf-Subordinated Partition and the
        К -Property ........................................... 285
   9.5  The Bernoulli Property ................................ 290
   9.6  The Continuous-Time Case .............................. 297
   9.7  Notes ................................................. 303
10 Measure-Theoretic Entropy and Lyapunov Exponents ........... 304
   10.1 Entropy of Measurable Transformations ................. 304
   10.2 The Margulis-Ruelle Inequality ........................ 305
   10.3 The Topological Entropy and Lyapunov Exponents ........ 308
   10.4 The Entropy Formula ................................... 311
   10.5 Mane's Proof of the Entropy Formula ................... 315
   10.6 Notes ................................................. 324
11 Stable Ergodicity and Lyapunov Exponents. More Examples
   of Systems with Nonzero Exponents .......................... 326
   11.1 Uniform Partial Hyperbolicity and Stable
        Ergodicity ............................................ 326
   11.2 Partially Hyperbolic Systems with Nonzero Lyapunov
        Exponents ............................................. 329
   11.3 Hyperbolic Diffeomorphisms with Countably Many
        Ergodic Components .................................... 337
   11.4 Existence of Hyperbolic Diffeomorphisms on Compact
        Manifolds ............................................. 349
   11.5 Existence of Hyperbolic Flows on Compact Manifolds .... 369
   11.6 Foliations That Are Not Absolutely Continuous ......... 378
   11.7 An Open Set of Diffeomorphisms with Nonzero
        Lyapunov Exponents on Tori ............................ 382
   11.8 Notes ................................................. 383
12 Geodesic Flows ............................................. 385
   12.1 Hyperbolicity of Geodesic Flows ....................... 385
   12.2 Ergodic Properties of Geodesic Flows .................. 394
   12.3 Entropy of Geodesic Flows ............................. 404
   12.4 Topological Properties of Geodesic Flows .............. 407
   12.5 The Teichmuller Geodesic Flow ......................... 409
   12.6 Notes ................................................. 415
13 SRB Measures ............................................... 417
   13.1 Definition and Ergodic Properties of SRB Measures ..... 417
   13.2 A Characterization of SRB Measures .................... 421
   13.3 Constructions of SRB Measures ......................... 423
   13.4 Notes ................................................. 430

Part IV  General Hyperbolic Measures

14 Hyperbolic Measures: Entropy and Dimension ................. 433
   14.1 Pointwise Dimensions and the Ledrappier-Young
        Entropy Formula ....................................... 433
        14.1.1 Local Entropies ................................ 434
        14.1.2 Leaf Pointwise Dimensions ...................... 438
        14.1.3 The Ledrappier-Young Entropy Formula ........... 449
   14.2 Local Product Structure of Hyperbolic Measures ........ 450
   14.3 Applications to Dimension Theory ...................... 461
   14.4 Notes ................................................. 461
15 Hyperbolic Measures: Topological Properties ................ 463
   15.1 The Closing Lemma ..................................... 463
   15.2 The Shadowing Lemma ................................... 472
   15.3 The Livshitz Theorem .................................. 473
   15.4 Hyperbolic Periodic Orbits ............................ 474
   15.5 Topological Transitivity and Spectral
        Decomposition ......................................... 482
   15.6 Entropy, Horseshoes, and Periodic Points .............. 482
   15.7 Continuity Properties of Entropy ...................... 485
   15.1 Bibliography .......................................... 491

Index ......................................................... 501


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:24 2019. Размер: 17,457 bytes.
Посещение N 2342 c 13.10.2009