Cambridge aerospace series; 21 (Cambridge, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаJoseph D. Potential flows of viscous and viscoelastic fluids / Joseph D., Funada T., Wang J. - Repr. of ed. 2007. - Cambridge: Cambridge University Press, 2008. - xvii, 497 p.: ill. - (Cambridge aerospace series; 21). - Ref.: p.473-486. - Ind.: p.487-497. - ISBN 978-0-521-87337-6
 

Оглавление / Contents
 
Preface page ................................................... xv
List of Abbreviations ........................................ xvii

1. Introduction ................................................ 1
   1.1. Irrotational flow, Laplace's equation ................... 2
   1.2. Continuity equation, incompressible fluids,
        isochoric flow .......................................... 3
   1.3. Euler's equations ....................................... 3
   1.4. Generation of vorticity in fluids governed by
        Euler's equations ....................................... 4
   1.5. Perfect fluids, irrotational flow ....................... 4
   1.6. Boundary conditions for irrotational flow ............... 5
   1.7. Streaming irrotational flow over a stationary sphere .... 6
2. Historical notes ............................................. 8
   2.1. Navier-Stokes equations ................................. 8
   2.2. Stokes theory of potential flow of viscous fluid ........ 9
   2.3. The dissipation method ................................. 10
   2.4. The distance a wave will travel before it decays by
        a certain amount ....................................... 11
3. Boundary conditions for viscous fluids ...................... 13
4. Helmholtz decomposition coupling rotational to
   irrotational flow ........................................... 16
   4.1. Helmholtz decomposition ................................ 16
   4.2. Navier-Stokes equations for the decomposition .......... 17
   4.3. Self-equilibration of the irrotational viscous
        stress ................................................. 19
   4.4. Dissipation function for the decomposed motion ......... 20
   4.5. Irrotational flow and boundary conditions .............. 20
   4.6. Examples from hydrodynamics ............................ 21
        4.6.1. Poiseuille flow ................................. 21
        4.6.2. Flow between rotating cylinders ................. 21
        4.6.3. Stokes flow around a sphere of radius a in
               a uniform stream U .............................. 22
        4.6.4. Streaming motion past an ellipsoid .............. 23
        4.6.4. Streaming motion past an ellipsoid .............. 23
        4.6.5. Hadamard-Rybyshinsky solution for streaming
               flow past a liquid sphere ....................... 23
        4.6.6. Axisymmetric steady flow around a spherical
               gas bubble at finite Reynolds numbers ........... 24
        4.6.7. Viscous decay of free-gravity waves ............. 24
        4.6.8. Oseen flow ...................................... 25
        4.6.9. Flows near internal stagnation points in
               viscous incompressible fluids ................... 26
        4.6.10.Hiemenz boundary-layer solution for two-
               dimensional flow toward a "stagnation point"
               at a rigid boundary ............................. 29
        4.6.11.Jeffrey-Hamel flow in diverging and
               converging channels ............................. 31
        4.6.12.An irrotational Stokes flow ..................... 32
        4.6.13.Lighthill's approach ............................ 32
   4.7. Conclusion ............................................. 33
5. Harmonic functions that give rise to vorticity .............. 35
6. Radial motions of a spherical gas bubble in a viscous
   liquid ...................................................... 39
7. Rise velocity of a spherical cap bubble ..................... 42
   7.1. Analysis ............................................... 42
   7.2. Experiments ............................................ 46
   7.3. Conclusions ............................................ 50
8. Ellipsoidal model of the rise of a Taylor bubble in a
   round tube .................................................. 51
   8.1. Introduction ........................................... 51
        8.1.1. Unexplained and paradoxical features ............ 52
        8.1.2. Drainage ........................................ 53
        8.1.3. Brown's analysis of drainage .................... 54
        8.1.4. Viscous potential flow .......................... 55
   8.2. Ellipsoidal bubbles .................................... 56
        8.2.1. Ovary ellipsoid ................................. 56
        8.2.2. Planetary ellipsoid ............................. 60
        8.2.3. Dimensionless rise velocity ..................... 61
   8.3. Comparison of theory and experiment .................... 63
   8.4. Comparison of theory and correlations .................. 66
   8.5. Conclusion ............................................. 68
9. Rayleigh-Taylor instability of viscous fluids ............... 70
   9.1. Acceleration ........................................... 71
   9.2. Simple thought experiments ............................. 71
   9.3. Analysis ............................................... 71
        9.3.1. Linear theory of Chandrasekhar .................. 73
        9.3.2. Viscous potential flow .......................... 74
   9.4. Comparison of theory and experiments ................... 76
   9.5. Comparison of the stability theory with the
        experiments on drop breakup ............................ 76
   9.6. Comparison of the measured wavelength of
        corrugations on the drop surface with the prediction
        of the stability theory ................................ 81
   9.7. Fragmentation of Newtonian and viscoelastic drops ...... 84
   9.8. Modeling Rayleigh-Taylor instability of a sedimenting
        suspension of several thousand circular particles
        in a direct numerical simulation ....................... 89
10.The force on a cylinder near a wall in viscous potential
   flows ....................................................... 90
   10.1.The flow that is due to the circulation about
        the cylinder ........................................... 90
   10.2.The streaming flow past the cylinder near a wall ....... 93
   10.3.The streaming flow past a cylinder with circulation
        near a wall ............................................ 95
11.Kelvin-Helmholtz instability ............................... 100
   11.1.KH instability on an unbounded domain ................. 100
   11.2.Maximum growth rate, Hadamard instability, neutral
        curves ................................................ 102
        11.2.1.Maximum growth rate ............................ 102
        11.2.2.Hadamard instability ........................... 102
        11.2.3.The regularization of Hadamard instability ..... 102
        11.2.4.Neutral curves ................................. 103
   11.3.KH instability in a channel ........................... 103
        11.3.1.Formulation of the problem ..................... 104
        11.3.2.Viscous potential flow analysis ................ 105
        11.3.3.KH instability of inviscid fluid ............... 109
        11.3.4.Dimensionless form of the dispersion
               equation ....................................... 110
        11.3.5.The effect of liquid viscosity and surface
               tension on growth rates and neutral curves ..... 112
        11.3.6.Comparison of theory and experiments in
               rectangular ducts .............................. 114
        11.3.7.Critical viscosity and density ratios .......... 118
        11.3.8.Further comparisons with previous results ...... 119
        11.3.9.Nonlinear effects .............................. 121
        11.3.10.Combinations of Rayleigh-Taylor and Kelvin-
                Helmholtz instabilities ....................... 123
12.Energy equation for irrotational theories of gas-liquid
   flow: viscous potential flow, viscous potential flow with
   pressure correction, and dissipation method ................ 126
   12.1.Viscous potential flow ................................ 126
   12.2.Dissipation method according to Lamb .................. 126
   12.3.Drag on a spherical gas bubble calculated from the
        viscous dissipation of an irrotational flow ........... 127
   12.4.The idea of a pressure correction ..................... 127
   12.5.Energy equation for irrotational flow of a viscous
        fluid ................................................. 128
   12.6.Viscous correction of viscous potential flow .......... 130
   12.7.Direct derivation of the viscous correction of
        the normal stress balance for the viscous decay
        of capillary-gravity waves ............................ 132
13.Rising bubbles ............................................. 134
   13.1.The dissipation approximation and viscous potential
        flow .................................................. 134
        13.1.1.Pressure correction formulas ................... 134
   13.2.Rising spherical gas bubble ........................... 135
   13.3.Rising oblate ellipsoidal bubble ...................... 136
   13.4.A liquid drop rising in another liquid ................ 137
   13.5.Purely irrotational analysis of a toroidal bubble
        in a viscous fluid .................................... 139
        13.5.1.Prior work, experiments ........................ 139
        13.5.2.The energy equation ............................ 141
        13.5.3.The impulse equation ........................... 145
        13.5.4.Comparison of irrotational solutions for
               inviscid and viscous fluids .................... 145
        13.5.5.Stability of the toroidal vortex ............... 148
        13.5.6.Boundary-integral study of vortex ring
               bubbles in a viscous liquid .................... 152
        13.5.7.Irrotational motion of a massless cylinder
               under the combined action of Kutta-Joukowski
               lift, acceleration of added mass, and viscous
               drag ........................................... 153
   13.6.The motion of a spherical gas bubble in viscous
        potential flow ........................................ 155
   13.7.Steady motion of a deforming gas bubble in
        a viscous potential flow .............................. 157
   13.8.Dynamic simulations of the rise of many bubbles in
        a viscous potential flow .............................. 157
14.Purely irrotational theories of the effect of viscosity
   on the decay of waves ...................................... 159
   14.1.Decay of free-gravity waves ........................... 159
        14.1.1.Introduction ................................... 159
        14.1.2.Irrotational viscous corrections for
               the potential flow solution .................... 160
        14.1.3.Relation between the pressure correction and
               Lamb's exact solution .......................... 162
        14.1.4.Comparison of the decay rate and the wave
               velocity given by the exact solution, VPF,
               and VCVPF ...................................... 163
        14.1.5.Why does the exact solution agree with VCVPF
               when к < кс and with VPF when к > кс? .......... 166
        14.1.6.Conclusion and discussion ...................... 168
        14.1.7.Quasi-potential approximation - vorticity
               layers ......................................... 169
   14.2.Viscous decay of capillary waves on drops and
        bubbles ............................................... 170
        14.2.1.Introduction ................................... 171
        14.2.2.VPF analysis of a single spherical drop
               immersed in another fluid ...................... 172
        14.2.3.VCVPF analysis of a single spherical drop
               immersed in another fluid ...................... 176
        14.2.4.Dissipation approximation (DM) ................. 180
        14.2.5.Exact solution of the linearized free-
               surface problem ................................ 181
        14.2.6.VPF and VCVPF analyses for waves acting on
               a plane interface considering surface
               tension - comparison with Lamb's solution ...... 183
        14.2.7.Results and discussion ......................... 185
        14.2.8.Concluding remarks ............................. 192
   14.3.Irrotational dissipation of capillary-gravity waves ... 193
        14.3.1.Correction of the wave frequency assumed by
               Lamb ........................................... 193
        14.3.2.Irrotational dissipation of nonlinear
               capillary-gravity waves ........................ 195
15.Irrotational Faraday waves on a viscous fluid .............. 197
   15.1.Introduction .......................................... 198
   15.2.Energy equation ....................................... 199
   15.3.VPF and VCVPF ......................................... 200
        15.3.1.Potential flow ................................. 200
        15.3.2.Amplitude equations for the elevation of
               the free surface ............................... 201
   15.4.Dissipation method .................................... 204
   15.5.Stability analysis .................................... 204
   15.6.Rayleigh-Taylor instability and Faraday waves ......... 206
   15.7.Comparison of purely irrotational solutions with
        exact solutions ....................................... 210
   15.8.Bifurcation of Faraday waves in a nearly square
        container ............................................. 213
   15.9.Conclusion ............................................ 213
16.Stability of a liquid jet into incompressible gases and
   liquids .................................................... 215
   16.1.Capillary instability of a liquid cylinder in
        another fluid ......................................... 215
        16.1.1.Introduction ................................... 215
        16.1.2.Linearized equations governing capillary
               instability .................................... 217
        16.1.3.Fully viscous flow analysis .................... 218
        16.1.4.Viscous potential flow analysis ................ 218
        16.1.5.Pressure correction for viscous potential
               flow ........................................... 219
        16.1.6.Comparison of growth rates ..................... 222
        16.1.7.Dissipation calculation for capillary
               instability .................................... 230
        16.1.8.Discussion of the pressure corrections at
               the interface of two viscous fluids ............ 232
        16.1.9.Capillary instability when one fluid is
               a dynamically inactive gas ..................... 234
        16.1.10.Conclusions ................................... 237
   16.2.Stability of a liquid jet into incompressible gases:
        Temporal, convective, and absolute instabilities ...... 238
        16.2.1.Introduction ................................... 239
        16.2.2.Problem formulation ............................ 240
        16.2.3.Dispersion relation ............................ 241
        16.2.4.Temporal instability ........................... 243
        16.2.5.Numerical results of temporal instability ...... 250
        16.2.6.Spatial, absolute, and convective
               instability .................................... 251
        16.2.7.Algebraic equations at a singular point ........ 255
        16.2.8.Subcritical, critical, and supercritical
               singular points ................................ 256
        16.2.9.Inviscid jet in inviscid fluid (Re → ∞,
               т = 0) ......................................... 261
        16.2.10.Exact solution; comparison with previous
                results ....................................... 262
        16.2.11.Summary and discussion ........................ 266
   16.3.Viscous potential flow of the Kelvin-Helmholtz
        instability of a cylindrical jet of one fluid into
        the same fluid ........................................ 267
        16.3.1.Mathematical formulation ....................... 267
        16.3.2.Normal modes; dispersion relation .............. 268
        16.3.3.Growth rates and frequencies ................... 269
        16.3.4.Hadamard instabilities for piecewise
               discontinuous profiles ......................... 269
17.Stress-induced cavitation .................................. 272
   17.1.Theory of stress-induced cavitation ................... 273
        17.1.1.Mathematical formulation ....................... 273
        17.1.2.Cavitation threshold ........................... 275
   17.2.Viscous potential flow analysis of stress-induced
        cavitation in an aperture flow ........................ 278
        17.2.1.Analysis of stress-induced cavitation .......... 279
        17.2.2.Stream function, potential function, and
               velocity ....................................... 281
        17.2.3.Cavitation threshold ........................... 282
        17.2.4.Conclusions .................................... 286
        17.2.5.Navier-Stokes simulation ....................... 287
   17.3.Streaming motion past a sphere ........................ 287
        17.3.1.Irrotational flow of a viscous fluid ........... 290
        17.3.2.An analysis for maximum К ...................... 293
   17.4.Symmetric model of capillary collapse and rupture ..... 297
        17.4.1.Introduction ................................... 297
        17.4.2.Analysis ....................................... 299
        17.4.3.Conclusions and discussion ..................... 304
        17.4.4.Appendix ....................................... 308
18.Viscous effects of the irrotational flow outside
   boundary layers on rigid solids ............................ 310
   18.1.Extra drag due to viscous dissipation of the
        irrotational flow outside the boundary layer .......... 311
        18.1.1.Pressure corrections for the drag on
               a circular gas bubble .......................... 312
        18.1.2.A rotating cylinder in a uniform stream ........ 315
        18.1.3.The additional drag on an airfoil by
               the dissipation method ......................... 324
        18.1.4.Discussion and conclusion ...................... 327
   18.2.Glauert's solution of the boundary layer on
        a rapidly rotating cylinder in a uniform stream
        revisited ............................................. 329
        18.2.1.Introduction ................................... 330
        18.2.2.Unapproximated governing equations ............. 334
        18.2.3.Boundary-layer approximation and Glauert's
               equations ...................................... 334
        18.2.4.Decomposition of the velocity and pressure
               field .......................................... 335
        18.2.5.Solution of the boundary-layer flow ............ 336
        18.2.6.Higher-order boundary-layer theory ............. 347
        18.2.7.Discussion and conclusion ...................... 350
   18.3.Numerical study of the steady-state uniform flow
        past a rotating cylinder .............................. 352
        18.3.1.Introduction ................................... 353
        18.3.2.Numerical features ............................. 355
        18.3.3.Results and discussion ......................... 359
        18.3.4.Concluding remarks ............................. 372
19.Irrotational flows that satisfy the compressible Navier-
   Stokes equations ........................................... 374
   19.1.Acoustics ............................................. 375
   19.2.Spherically symmetric waves ........................... 377
   19.3.Liquid jet in a high-Mach-number airstream ............ 378
        19.3.1.Introduction ................................... 378
        19.3.2.Basic partial differential equations ........... 379
        19.3.3.Cylindrical liquid jet in a compressible gas ... 380
        19.3.4.Basic isentropic relations ..................... 380
        19.3.5.Linear stability of the cylindrical liquid
               jet in a compressible gas; dispersion
               equation ....................................... 381
        19.3.6.Stability problem in dimensionless form ........ 383
        19.3.7.Inviscid potential flow ........................ 386
        19.3.8.Growth-rate parameters as functions of M for
               different viscosities .......................... 386
        19.3.9.Azimuthal periodicity of the most dangerous
               disturbance .................................... 387
        19.3.10.Variation of the growth-rate parameters
               with the Weber number .......................... 388
        19.3.11.Convective/absolute instability ............... 389
        19.3.12.Conclusions ................................... 393
20.Irrotational flows of viscoelastic fluids .................. 395
   20.1.Oldroyd В model ....................................... 395
   20.2.Asymptotic form of the constitutive equations ......... 396
        20.2.1.Retarded motion expansion for the UCM model .... 396
        20.2.2.The expanded UCM model in potential flow ....... 397
        20.2.3.Potential flow past a sphere calculated with
               the expanded UCM model ......................... 397
   20.3.Second-order fluids ................................... 398
   20.4.Purely irrotational flows ............................. 400
   20.5.Purely irrotational flows of a second-order fluid ..... 400
   20.6.Reversal of the sign of the normal stress at a point
        of stagnation ......................................... 401
   20.7.Fluid forces near stagnation points on solid bodies ... 402
        20.7.1.Turning couples on long bodies ................. 402
        20.7.2.Particle-particle interactions ................. 402
        20.7.3.Sphere-wall interactions ....................... 403
        20.7.4.Flow-induced microstructure .................... 404
   20.8.Potential flow over a sphere for a second-order
        fluid ................................................. 406
   20.9.Potential flow over an ellipse ........................ 408
        20.9.1.Normal stress at the surface of the ellipse .... 409
        20.9.2.The effects of the Reynolds number ............. 410
        20.9.3.The effects of-α1(pα2) ......................... 412
        20.9.4.The effects of the aspect ratio ................ 412
   20.10.The moment on the ellipse ............................ 413
   20.11.The reversal of the sign of the normal stress at
         stagnation points .................................... 414
   20.12.Flow past a flat plate ............................... 416
   20.13.Flow past a circular cylinder with circulation ....... 416
   20.14.Potential flow of a second-order fluid over a
         triaxial ellipsoid ................................... 417
   20.15.Motion of a sphere normal to a wall in a second-
         order fluid .......................................... 418
         20.15.1.Low Reynolds numbers ......................... 419
        20.15.2.Viscoelastic Potential Flow ................... 422
        20.15.3.Conclusions ................................... 425
21.Purely irrotational theories of stability of
   viscoelastic fluids ........................................ 426
   21.1.Rayleigh-Taylor instability of viscoelastic drops
        at high Weber numbers ................................. 426
        21.1.1.Introduction ................................... 426
        21.1.2.Experiments .................................... 427
        21.1.3.Theory ......................................... 428
        21.1.4.Comparison of theory and experiment ............ 437
   21.2.Purely irrotational theories of the effects of
        viscosity and viscoelasticity on capillary
        instability of a liquid cylinder ...................... 443
        21.2.1.Introduction ................................... 443
        21.2.2.Linear stability equations and the exact
               solution ....................................... 444
        21.2.3.Viscoelastic potential flow .................... 446
        21.2.4.Dissipation and the formulation for the
               additional pressure contribution ............... 447
        21.2.5.The additional pressure contribution for
               capillary instability .......................... 448
        21.2.6.Comparison of the growth rate .................. 449
        21.2.7.Comparison of the stream functions ............. 451
        21.2.8.Discussion ..................................... 456
   21.3.Steady motion of a deforming gas bubble in
        a viscous potential flow .............................. 460
22.Numerical methods for irrotational flows of viscous
   fluid ...................................................... 461
   22.1.Perturbation methods .................................. 461
   22.2.Boundary-integral methods for inviscid potential
        flow .................................................. 462
   22.3.Boundary-integral methods for viscous potential
        flow .................................................. 464

Appendix A. Equations of motion and strain rates for
            rotational and irrotational flow in Cartesian,
            cylindrical, and spherical coordinates ............ 465

Appendix B. List of frequently used symbols and concepts ...... 471

References .................................................... 473

Index ......................................................... 487


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:22 2019. Размер: 29,910 bytes.
Посещение N 2318 c 06.10.2009