Oxford studies in nuclear physics; 25 (Oxford, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHofmann H. The physics of warm nuclei: with analogies to mesoscopic systems. - Oxford: Oxford University Press, 2008. - xix, 623 p.: ill. - (Oxford studies in nuclear physics; 25). - Ref.: p.597-613. - Ind.: p.615-623. - ISBN 978-90-5948-3
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
I. BASIC ELEMENTS AND MODELS

1. Elementary concepts of nuclear physics ....................... 3
   1.1. The force between two nucleons .......................... 3
        1.1.1. Possible forms of the interaction ................ 4
        1.1.2. The radial dependence of the interaction ......... 5
        1.1.3. The role of sub-nuclear degrees of freedom ....... б
   1.2. The model of the Fermi gas .............................. 7
        1.2.1. Many-body properties in the ground state ......... 9
        1.2.2. Two-body correlations in a homogeneous system ... 11
   1.3. Basic properties of finite nuclei ...................... 14
        1.3.1. The interaction of nucleons with nuclei ......... 14
        1.3.2. The optical model ............................... 19
        1.3.3. The liquid drop model ........................... 23
2. Nuclear matter as a Fermi liquid ............................ 30
   2.1. A first, qualitative survey ............................ 30
        2.1.1. The inadequacy of Hartree-Fock with bare
               interactions .................................... 30
        2.1.2. Short-range correlations ........................ 32
        2.1.3. Properties of nuclear matter in chiral
               dynamics ........................................ 34
        2.1.4. How dense is nuclear matter? .................... 35
   2.2. The independent pair approximation ..................... 36
        2.2.1. The equation for the one-body wave functions .... 36
        2.2.2. The total energy in terms of two-body wave
               functions ....................................... 37
        2.2.3. The Bethe-Goldstone equation .................... 38
        2.2.4. The G-matrix .................................... 42
   2.3. Brueckner-Hartree-Fock approximation (BHF) ............. 44
        2.3.1. BHF at finite temperature ....................... 48
   2.4. A variational approach based on generalized Jastrow
        functions .............................................. 48
        2.4.1. Extension to finite temperature ................. 50
   2.5. Effective interactions of Skyrme type .................. 52
        2.5.1. Expansion to small relative momenta ............. 52
   2.6. The nuclear equation of state (EOS) .................... 55
        2.6.1. An energy functional with three-body forces ..... 55
        2.6.2. The EOS with Skyrme interactions ................ 56
        2.6.3. Applications in astrophysics .................... 59
   2.7. Transport phenomena in the Fermi liquid ................ 61
        2.7.1. Semi-classical transport equations .............. 62
3. Independent particles and quasiparticles in finite nuclei ... 67
   3.1. Hartree-Fock with effective forces ..................... 67
        3.1.1. H-F with the Skyrme interaction ................. 67
        3.1.2. Constrained Hartree-Fock ........................ 68
        3.1.3. Other effective interactions .................... 69
   3.2. Phenomenological single particle potentials ............ 70
        3.2.1. The spherical case .............................. 70
        3.2.2. The deformed single particle model .............. 73
   3.3. Excitations of the many-body system .................... 78
        3.3.1. The concept of particle-hole excitations ........ 78
        3.3.2. Pair correlations ............................... 79
4. From the shell model to the compound nucleus ................ 85
   4.1. Shell model with residual interactions ................. 85
        4.1.1. Nearest level spacing ........................... 86
   4.2. Random Matrix Model .................................... 87
        4.2.1. Gaussian ensembles of real symmetric matrices ... 87
        4.2.2. Eigenvalues, level spacings and eigenvectors .... 89
        4.2.3. Comments on the RMM ............................. 91
   4.3. The spreading of states into more complicated
        configurations ......................................... 93
        4.3.1. A schematic model ............................... 94
        4.3.2. Strength functions .............................. 95
        4.3.3. Time-dependent description ...................... 98
        4.3.4. Spectral functions for single particle motion ... 99
5. Shell effects and Strutinsky renormalization ............... 104
   5.1. Physical background ................................... 106
        5.1.1. The independent particle picture, once more .... 107
        5.1.2. The Strutinsky energy theorem .................. 108
   5.2. The Strutinsky procedure .............................. 109
        5.2.1. Formal aspects of smoothing .................... 109
        5.2.2. Shell correction to level density and ground
               state energy ................................... 110
        5.2.3. Further averaging procedures ................... 113
   5.3. The static energy of finite nuclei .................... 115
   5.4. An excursion into periodic-orbit theory (POT) ......... 119
   5.5. The total energy at finite temperature ................ 122
        5.5.1. The smooth part of the energy at small
               excitations .................................... 123
        5.5.2. Contributions from the oscillating level
               density ........................................ 124
6. Average collective motion of small amplitude ............... 128
   6.1. Equation of motion from energy conservation ........... 129
        6.1.1. Induced forces for harmonic motion ............. 129
        6.1.2. Equation of motion ............................. 131
        6.1.3. One-particle one-hole excitations .............. 133
   6.2. The collective response function ...................... 134
        6.2.1. Collective response and sum rules for stable
               systems ........................................ 137
        6.2.2. Generalization to several dimensions ........... 139
        6.2.3. Mean field approximation for an effective
               two-body interaction ........................... 141
        6.2.4. Isovector modes ................................ 143
   6.3. Rotations as degenerate vibrations .................... 143
   6.4. Microscopic origin of macroscopic damping ............. 145
        6.4.1. Irreversibility through energy smearing ........ 146
        6.4.2. Relaxation in a Random Matrix Model ............ 150
        6.4.3. The effects of "collisions" on nucleonic
               motion ......................................... 150
   6.5. Damped collective motion at thermal excitations ....... 154
        6.5.1. The equation of motion at finite thermal
               excitations .................................... 154
        6.5.2. The strict Markov limit ........................ 157
        6.5.3. The collective response for quasi-static
               processes ...................................... 160
        6.5.4. An analytically solvable model ................. 164
   6.6. Temperature dependence of nuclear transport ........... 166
        6.6.1. The collective strength distribution at
               finite T ....................................... 166
        6.6.2. Diabatic models ................................ 171
        6.6.3. T-dependence of transport coefficients ......... 177
   6.7. Rotations at finite thermal excitations ............... 185
7. Transport theory of nuclear collective motion .............. 190
   7.1. The locally harmonic approximation .................... 191
   7.2. Equilibrium fluctuations of the local oscillator ...... 194
   7.3. Fluctuations of the local propagators ................. 196
        7.3.1. Quantal diffusion coefficients from the FDT .... 200
   7.4. Fokker-Planck equations for the damped harmonic
        oscillator ............................................ 203
        7.4.1. Stationary solutions for oscillators ........... 203
        7.4.2. Dynamics of fluctuations for stable modes ...... 206
        7.4.3. The time-dependent solutions for unstable
               modes and their physical interpretation ........ 207
   7.5. Quantum features of collective transport from the
        microscopic point of view ............................. 209
        7.5.1. Quantized Hamiltonians for collective motion ... 210
        7.5.2. A non-perturbative Nakajima-Zwanzig approach ... 217

II.COMPLEX NUCLEAR SYSTEMS

8. The statistical model for the decay of excited nuclei ...... 225
   8.1. Decay of the compound nucleus by particle emission .... 225
        8.1.1. Transition rates ............................... 225
        8.1.2. Evaporation rates for light particles .......... 228
   8.2. Fission ............................................... 229
        8.2.1. The Bohr-Wheeler formula ....................... 229
        8.2.2. Stability conditions in the macroscopic
               limit .......................................... 232
9. Pre-equilibrium reactions .................................. 235
   9.1. An illustrative, realistic prototype .................. 236
   9.2. A sketch of existing theories ......................... 242
        9.2.1. Comments ....................................... 244
10.Level densities and nuclear thermometry .................... 246
   10.1.Darwin-Fowler approach for theoretical models ......... 246
        10.1.1.Level densities and Strutinsky
               renormalization ................................ 247
        10.1.2.Dependence on angular momentum ................. 251
        10.1.3.Microscopic models with residual
               interactions ................................... 252
   10.2.Empirical level densities ............................. 254
   10.3.Nuclear thermometry ................................... 257
11.Large-scale collective motion at finite thermal
   excitations ................................................ 262
   11.1.Global transport equations ............................ 262
        11.1.1.Fokker-Planck equations ........................ 262
        11.1.2.Over-damped motion ............................. 265
        11.1.3.Langevin equations ............................. 267
        11.1.4.Probability distribution for collective
               variables ...................................... 269
   11.2.Transport coefficients for large-scale motion ......... 270
   11.2.1.The LHA at level crossings and avoided crossings .... 275
        11.2.2.Thermal aspects of global motion ............... 278
12.Dynamics of fission at finite temperature .................. 280
   12.1.Transitions between potential wells ................... 280
        12.1.1.Transition rate for over-damped motion ......... 281
   12.2.The rate formulas of Kramers and Langer ............... 283
   12.3.Escape time for strongly damped motion ................ 288
   12.4.A critical discussion of timescales ................... 291
        12.4.1.Transient- and saddle-scission times ........... 293
        12.4.2.Implications from the concept of the MFPT ...... 296
   12.5.Inclusion of quantum effects .......................... 299
        12.5.1.Quantum decay rates within the LHA ............. 300
        12.5.2.Rate formulas for motion treated self-
               consistently ................................... 302
        12.5.3.Quantum effects in collective transport,
               a true challenge ............................... 307
13.Heavy-ion collisions at low energies ....................... 308
   13.1.Transport models for heavy-ion collisions ............. 309
        13.1.1.Commonly used inputs for transport equations ... 313
   13.2.Differential cross sections ........................... 317
   13.3.Fusion reactions ...................................... 319
        13.3.1.Micro- and macroscopic formation
               probabilities .................................. 321
   13.4.Critical remarks on theoretical approaches and their
        assumptions ........................................... 326
14.Giant dipole excitations ................................... 330
   14.1.Absorption and radiation of the classical dipole ...... 330
   14.2.Nuclear dipole modes .................................. 332
        14.2.1.Extension to quantum mechanics ................. 333
        14.2.2.Damping of giant dipole modes .................. 333

III.MESOSCOPIC SYSTEMS

15.Metals and quantum wires ................................... 341
   15.1.Electronic transport in metals ........................ 341
        15.1.1.The Drude model and basic definitions .......... 341
        15.1.2.The transport equation and electronic
               conductance .................................... 342
   15.2.Quantum wires ......................................... 344
        15.2.1.Mesoscopic systems in semiconductor
               heterostructures ............................... 344
        15.2.2.Two-dimensional electron gas ................... 345
        15.2.3.Quantization of conductivity for ballistic
               transport ...................................... 346
        15.2.4.Physical interpretation and discussion ......... 348
16.Metal clusters ............................................. 350
   16.1.Structure of metal clusters ........................... 350
   16.2.Optical properties .................................... 351
        16.2.1.Cross sections for scattering of light ......... 353
        16.2.2.Optical properties for the jellium model ....... 354
        16.2.3.The infinitely deep square well ................ 355
17.Energy transfer to a system of independent fermions ........ 361
   17.1.Forced energy transfer within the wall picture ........ 361
        17.1.1.Energy transfer at finite frequency ............ 363
        17.1.2.Fermions inside billiards ...................... 365
   17.2.Wall friction by Strutinsky smoothing ................. 366

IV.THEORETICAL TOOLS

18.Elements of reaction theory ................................ 373
   18.1.Potential scattering .................................. 373
        18.1.1.The T-matrix ................................... 373
        18.1.2.Phase shifts for central potentials ............ 379
        18.1.3.Inelastic processes ............................ 380
   18.2.Generalization to nuclear reactions ................... 382
        18.2.1.Reaction channels .............................. 382
        18.2.2.Cross section .................................. 383
        18.2.3.The T-matrix for nuclear reactions ............. 384
        18.2.4.Isolated resonances ............................ 385
        18.2.5.Overlapping resonances ......................... 389
        18.2.6.T-matrix with angular momentum coupling ........ 389
   18.3.Energy averaged amplitudes ............................ 390
        18.3.1.The optical model .............................. 390
        18.3.2.Intermediate structure through doorway
               resonances ..................................... 392
   18.4.Statistical theory .................................... 395
        18.4.1.Porter-Thomas distribution for widths .......... 396
        18.4.2.Smooth and fluctuating parts of the cross
               section ........................................ 396
        18.4.3.Hauser-Feshbach theory ......................... 401
        18.4.4.Critique of the statistical model .............. 403
19.Density operators and Wigner functions ..................... 406
   19.1.The many-body system .................................. 406
        19.1.1.Hilbert states of the many-body system ......... 406
        19.1.2.Density operators and matrices ................. 406
        19.1.3.Reduction to one- and two-body densities ....... 408
   19.2.Many-body functions from one-body functions ........... 410
        19.2.1. One- and two-body densities ................... 411
   19.3.The Wigner transformation ............................. 412
        19.3.1.The Wigner transform in three dimensions ....... 412
        19.3.2.Many-body systems of indistinguishable
               particles ...................................... 414
        19.3.3.Propagation of wave packets .................... 415
        19.3.4.Correspondence rules ........................... 416
        19.3.5.The equilibrium distribution of the
               oscillator ..................................... 417
20.The Hartree—Fock approximation ............................. 420
   20.1.Hartree-Fock with density operators ................... 420
        20.1.1.The Hartree-Fock equations ..................... 422
        20.1.2.The ground state energy in HF-approximation .... 423
   20.2.Hartree-Fock at finite temperature .................... 424
        20.2.1 TDHF at finite T ............................... 425
21.Transport equations for the one-body density ............... 426
   21.1.The Wigner transform of the von Neumann equation ...... 426
   21.2.Collision terms in semi-classical approximations ...... 428
        21.2.1.The collision term in the Born approximation ... 430
        21.2.2.The BUU and the Landau-Vlasov equation ......... 431
   21.3.Relaxation to equilibrium ............................. 432
        21.3.1.Relaxation time approximation to the
               collision term ................................. 434
        21.3.2.A few remarks on the concept of self-
               energies ....................................... 435
22.Nuclear thermostatics ...................................... 437
   22.1.Elements of statistical mechanics ..................... 437
        22.1.1.Thermostatics for deformed nuclei .............. 438
        22.1.2.Generalized ensembles .......................... 443
        22.1.3.Extremal properties ............................ 448
   22.2.Level densities and energy distributions .............. 450
        22.2.1.Composite systems .............................. 452
        22.2.2.A Gaussian approximation ....................... 454
        22.2.3.Darwin-Fowler method for the level density ..... 457
   22.3.Uncertainty of temperature for isolated systems ....... 461
        22.3.1.The physical background ........................ 461
        22.3.2.The thermal uncertainty relation ............... 463
   22.4.The lack of extensivity and negative specific heats ... 464
   22.5.Thermostatics of independent particles ................ 466
        22.5.1.Sommerfeld expansion for smooth level
               densities ...................................... 469
        22.5.2.Thermostatics for oscillating level
               densities ...................................... 470
        22.5.3.Influence of angular momentum .................. 472
23.Linear response theory ..................................... 475
   23.1.The model of the damped oscillator .................... 475
   23.2.A brief reminder of perturbation theory ............... 478
        23.2.1.Transition rate in lowest order ................ 480
   23.3.General properties of response functions .............. 482
        23.3.1.Basic definitions .............................. 482
        23.3.2.Basic properties ............................... 484
        23.3.3.Dissipation of energy .......................... 486
        23.3.4.Spectral representations ....................... 487
   23.4.Correlation functions and the fluctuation
        dissipation theorem ................................... 489
        23.4.1.Basic definitions .............................. 489
        23.4.2.The fluctuation dissipation theorem ............ 491
        23.4.3.Strength functions for periodic
               perturbations .................................. 492
        23.4.4.Linear response for a Random Matrix Model ...... 493
   23.5.Linear response at complex frequencies ................ 496
        23.5.1.Relation to thermal Green functions ............ 497
        23.5.2.Response functions for unstable modes .......... 498
        23.5.3.Equilibrium fluctuations of the oscillator ..... 499
   23.6.Susceptibilities and the static response .............. 501
        23.6.1.Static perturbations of the local
               equilibrium .................................... 501
        23.6.2.Isothermal and adiabatic susceptibilities ...... 504
        23.6.3.Relations to the static response ............... 505
   23.7.Linear irreversible processes ......................... 507
        23.7.1.Relaxation functions ........................... 507
        23.7.2.Variation of entropy in time ................... 510
        23.7.3.Time variation of the density operator ......... 512
        23.7.4.Onsager relations for macroscopic motion ....... 515
   23.8.Kubo formula for transport coefficients ............... 518
24.Functional integrals ....................................... 522
   24.1. Path integrals in quantum mechanics .................. 522
        24.1.1. Time propagation in quantum mechanics ......... 522
        24.1.2.Semi-classical approximation to the
               propagator ..................................... 525
        24.1.3.The path integral as a functional .............. 531
   24.2.Path integrals for statistical mechanics .............. 532
        24.2.1.The classical limit of statistical mechanics ... 535
        24.2.2.Quantum corrections ............................ 536
   24.3.Green functions and level densities ................... 539
        24.3.1.Periodic orbit theory .......................... 540
        24.3.2.The level density for regular and chaotic
               motion ......................................... 542
   24.4.Functional integrals for many-body systems ............ 543
        24.4.1.The Hubbard-Stratonovich transformation ........ 543
        24.4.2.The high temperature limit and quantum
               corrections .................................... 546
        24.4.3.The perturbed static path approximation
               (PSPA) ......................................... 548
25.Properties of Langevin and Fokker—Planck equations ......... 554
   25.1.The Brownian particle, a heuristic approach ........... 554
        25.1.1.Langevin equation .............................. 554
        25.1.2.Fokker-Planck equations ........................ 557
        25.1.3.Cumulant expansion and Gaussian
               distributions .................................. 559
   25.2.General properties of stochastic processes ............ 560
        25.2.1.Basic concepts ................................. 561
        25.2.2.Markov processes and the Chapman-Kolmogorov
               equation ....................................... 562
        25.2.3.Fokker-Planck equations from the Kramers-
               Moyal expansion ................................ 564
        25.2.4.The master equation ............................ 568
   25.3.Non-linear equations in one dimension ................. 570
        25.3.1.Transport equations for multiplicative noise ... 570
        25.3.2.Properties of the general Fokker-Planck
               equation ....................................... 572
   25.4.The mean first passage time ........................... 573
        25.4.1.Differential equation for the MFPT ............. 574
   25.5.The multidimensional Kramers equation ................. 575
        25.5.1.Gaussian solutions in curvilinear
               coordinates .................................... 576
        25.5.2.Time dependence of first and second moments
               for the harmonic oscillator .................... 578
   25.6.Microscopic approach to transport problems ............ 580
        25.6.1.The Nakajima-Zwanzig projection technique ...... 580
        25.6.2.Perturbative approach for factorized
               coupling ....................................... 582

V. AUXILIARY INFORMATION

26.Formal means ............................................... 589
   26.1.Gaussian integrals .................................... 589
   26.2.Stationary phase and steepest decent .................. 590
   26.3.The δ-function ........................................ 591
   26.4.Fourier and Laplace transformations ................... 591
   26.5.Derivative of exponential operators ................... 592
   26.6.The Mori product ...................................... 592
   26.7.Spin and isospin ...................................... 593
   26.8.Second quantization for fermions ...................... 594
27.Natural units in nuclear physics ........................... 596

References .................................................... 597

Index ......................................................... 615


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:22 2019. Размер: 28,613 bytes.
Посещение N 2157 c 06.10.2009