Lecture notes in mathematics; 1948 (Berlin, Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаA theory of shape identification / Cao F., Lisani J.-L., Morel J.-M., Muse P., Sur F.; ed. by Morel J.-M., Takens F., Teissier B. - Berlin, Heidelberg: Springer-Verlag, 2008. - 257 p.: ill. - (Lecture notes in mathematics; 1948). - Ref.: p.247-254. - Ind.: p.255-257. - ISBN 978-3-540-68480-0; ISSN 0075-8434
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1. Introduction ................................................. 1
   1.1. A Single Principle ...................................... 1
   1.2. Shape Invariants and Consequences ....................... 4
        1.2.1. Shape Distortions ................................ 4
   1.3. General Overview ........................................ 9
        1.3.1. Extraction of Shape Elements ..................... 9
        1.3.2. Shape Element Encoding .......................... 11
        1.3.3. Recognition of Shape Elements ................... 11
        1.3.4. Grouping ........................................ 12
        1.3.5. Algorithm Synopsis .............................. 12

Part I Extracting Image boundaries

2. Extracting Meaningful Curves from Images .................... 15
   2.1. The Level Lines Tree, or Topographic Map ............... 15
   2.2. Matas et al. Maximally Stable Extremal Regions
        (MSER) ................................................. 17
   2.3. Meaningful Boundaries .................................. 18
        2.3.1. Contrasted Boundaries ........................... 18
        2.3.2. Maximal Boundaries .............................. 19
   2.4. A Mathematical Justification of Meaningful
        Contrasted Boundaries .................................. 21
        2.4.1. Interpretation of the Number of False Alarms .... 21
   2.5. Multiscale Meaningful Boundaries ....................... 26
   2.6. Adapting Boundary Detection to Local Contrast .......... 27
        2.6.1. Local Contrast .................................. 29
        2.6.2. Experiments on Locally Contrasted Boundaries .... 30
   2.7. Bibliographic Notes .................................... 32
        2.7.1. Edge Detection .................................. 32
        2.7.2. Meaningful Boundaries vs. Haralick's Detector ... 33
        2.7.3. Level Lines and Shapes .......................... 34
        2.7.4. Tree of Shapes, FLST, and MSER .................. 35
        2.7.5. Extracting Shapes from Images ................... 35

Part II Level Line Invariant Descriptors

3. Robust Shape Directions ..................................... 41
   3.1. Flat Parts of Level Lines .............................. 41
        3.1.1. Flat Parts Detection Algorithm .................. 42
        3.1.2. Reduction to a Parameterless Method ............. 43
        3.1.3. The Algorithm ................................... 44
        3.1.4. Some Properties of the Detected Flat Parts ...... 44
   3.2. Experiments ............................................ 45
        3.2.1. Experimental Validation of the Flat Part
               Algorithm ....................................... 45
        3.2.2. Flat Parts Correspond to Salient Features ....... 47
   3.3. Curve Smoothing and the Reduction of the Number
        of Bitangent Lines ..................................... 49
   3.4. Bibliographic Notes .................................... 54
        3.4.1. Detecting Flat Parts in Curves .................. 54
        3.4.2. Scale-Space and Curve Smoothing ................. 57
4. Invariant Level Line Encoding ............................... 61
   4.1. Global Normalization and Encoding ...................... 61
        4.1.1. Global Affine Normalization ..................... 61
        4.1.2. Application to the MSER Normalization Method .... 64
        4.1.3. Geometric Global Normalization Methods .......... 65
   4.2. Semi-Local Normalization and Encoding .................. 66
        4.2.1. Similarity Invariant Normalization and 
               Encoding Algorithm .............................. 67
        4.2.2. Affine Invariant Normalization and Encoding
               Algorithm ....................................... 70
        4.2.3. Typical Number of LLDs in Images ................ 71
   4.3. Bibliographic Notes .................................... 73
        4.3.1. Geometric Invariance and Shape Recognition ...... 73
        4.3.2. Global Features and Global Normalization ........ 74
        4.3.3. Local and Semi-Local Features ................... 75

Part III Recognizing Level Lines

5. A Contrario Decision: the LLD Method ........................ 81
   5.1. A Contrario Models ..................................... 81
        5.1.1. Shape Model or Background Model? ................ 81
        5.1.2. Detection Terminology ........................... 83
   5.2. The Background Model ................................... 85
        5.2.1. Deriving Statistically Independent Features
               from Level Lines ................................ 87
   5.3. Testing the Background Model ........................... 89
   5.4. Bibliographic Notes .................................... 91
        5.4.1. Shape Distances ................................. 91
        5.4.2. A Contrario Methods ............................. 92
6. Meaningful Matches: Experiments on LLD and MSER ............. 93
   6.1. Semi-Local Meaningful Matches .......................... 93
        6.1.1. A Toy Example ................................... 94
        6.1.2. Perspective Distortion .......................... 98
        6.1.3. A More Difficult Problem ....................... 101
        6.1.4. Slightly Meaningful Matches between
               Unrelated Images ............................... 104
        6.1.5. Camera Blur .................................... 105
   6.2. Recognition Relative to Context ....................... 113
   6.3. Testing A Contrario MSER (Global Normalization) ....... 116
        6.3.1. Global Affine Invariant Recognition. A Toy
               Example ........................................ 116
        6.3.2. Comparing Similarity and Affine Invariant
               Global Recognition Methods ..................... 116
        6.3.3. Global Matches of Non-Locally Encoded LLDs ..... 118

Part IV Grouping Shape Elements

7. Hierarchical Clustering and Validity Assessment ............ 129
   7.1. Clustering Analysis ................................... 129
   7.2. A Contrario Cluster Validity .......................... 131
        7.2.1. The Background Model ........................... 131
        7.2.2. Meaningful Groups .............................. 132
   7.3. Optimal Merging Criteria .............................. 136
        7.3.1. Local Merging Criterion ........................ 136
   7.4. Computational Issues .................................. 140
        7.4.1. Choosing Test Regions .......................... 140
        7.4.2. Indivisibility and Maximality .................. 142
   7.5. Experimental Validation: Object Grouping Based
        on Elementary Features ................................ 143
        7.5.1. Segments ....................................... 144
        7.5.2. DNA Image ...................................... 146
   7.6. Bibliographic Notes ................................... 148
8. Grouping Spatially Coherent Meaningful Matches ............. 151
   8.1. Why Spatial Coherence Detection? ...................... 151
   8.2. Describing Transformations ............................ 153
        8.2.1. The Similarity Case ............................ 153
        8.2.2. The Affine Transformation Case ................. 154
   8.3. Meaningful Transformation Clusters .................... 155
        8.3.1. Measuring Transformation Dissimilarity ......... 155
        8.3.2. Background Model: the Similarity Case .......... 157
   8.4. Experiments ........................................... 158
   8.5. Bibliographic Notes ................................... 161
9. Experimental Results ....................................... 167
   9.1. Visualizing the Results ............................... 167
   9.2. Experiments ........................................... 168
        9.2.1. Multiple Occurrences of a Logo ................. 168
        9.2.2. Valbonne Church ................................ 173
        9.2.3. Tramway ........................................ 175
   9.3. Occlusions ............................................ 177
   9.4. Stroboscopic Effect ................................... 179

Part V The SIFT Method

10.The SIFT Method ............................................ 185
   10.1.A Short Guide to SIFT Encoding ........................ 185
        10.1.1.Scale-Space Extrema ............................ 186
        10.1.2.Accurate Key Point Detection ................... 187
        10.1.3.Orientation Assignment ......................... 188
        10.1.4.Local Image Descriptor ......................... 189
        10.1.5.SIFT Descriptor Matching ....................... 189
   10.2.Shape Element Stability versus SIFT Stability ......... 190
        10.2.1.An Experimental Protocol ....................... 190
        10.2.2.Experiments .................................... 191
        10.2.3.Some Conclusions Concerning Stability .......... 195
   10.3.SIFT Descriptors Matching versus LLD A Contrario
        Matching .............................................. 196
        10.3.1. Measuring Matching Performance ................ 198
        10.3.2. Experiments ................................... 201
   10.4.Conclusion ............................................ 207
   10.5.Bibliographic Notes ................................... 207
        10.5.1.Interest Points of an Image .................... 207
        10.5.2.Local Descriptors .............................. 207
        10.5.3.Matching and Grouping .......................... 208
11.Securing SIFT with A Contrario Techniques .................. 209
   11.1.A Contrario Clustering of SIFT Matches ................ 209
   11.2.Using a Background Model for SIFT ..................... 210
   11.3.Meaningful SIFT Matching .............................. 214
        11.3.1.Normalization .................................. 214
        11.3.2.Matching ....................................... 215
        11.3.3.Choosing Sample Points ......................... 218
   11.4.The Detection Algorithm ............................... 219
        11.4.1.Experiments: Securing SIFT Detections .......... 220
   11.5.Bibliographic Notes ................................... 224

A. Keynotes ................................................... 225
   A.l. Cluster Analysis Reader's Digest ...................... 225
        A.l.l. Partitional Clustering Methods ................. 225
        A.1.2. Iterative Methods for Partitional Clustering ... 227
        A.1.3. Hierarchical Clustering Methods ................ 228
   A.2. Three classical methods for object detection based
        on spatial coherence .................................. 235
        A.2.1. The Generalized Hough Transform ................ 235
        A.2.2. Geometric Hashing .............................. 236
        A.2.3. A RANSAC-based Approach ........................ 237
   A.3. On the Negative Association of Multinomial
        Distributions ......................................... 239
В. Algorithms ................................................. 243
   B.l. LLD Method Summary .................................... 243
   B.2. Improved MSER Method Summary .......................... 244
   B.3. Improved SIFT Method Summary .......................... 245

References .................................................... 247

Index ......................................................... 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:18 2019. Размер: 15,373 bytes.
Посещение N 2238 c 15.09.2009