1. Introduction ................................................. 1
2. Notation and preliminary facts .............................. 11
3. The general scheme of the proof of the main results ......... 38
4. p-large representations ..................................... 41
5. Regular unipotent elements for n = ps + 6, 0 < b < p ........ 54
6. A special case for G = Br(K) ................................ 66
7. The exceptional cases in Theorem 1.7 ........................ 74
8. Theorem 1.9 for regular unipotent elements and groups of
types A, B, and С ........................................... 77
9. The general case for regular elements ....................... 81
10.Theorem 1.3 for groups of types Ar and Br and regular
elements .................................................... 92
11.Proofs of the main theorems ................................. 93
12.Some examples .............................................. 116
Appendix. Tables .............................................. 119
Appendix. Bibliography ........................................ 151
Appendix. Index ............................................... 153
|