Memoirs of the American Mathematical Society; Vol.200, N 940 (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIooss G. Small divisor problem in the theory of three-dimensional water gravity waves / Iooss G., Plotnikov P.I. - Providence: American Mathematical Society, 2009. - vii, 128 p.: ill. - (Memoirs of the American Mathematical Society; Vol.200, N 940). - Bibliogr.: p.127-128. - ISBN 978-0-8218-4296-6; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

1.1. Presentation and History of the Problem .................... 1
1.2. Formulation of the Problem ................................. 4
1.3. Results .................................................... 7
1.4. Mathematical background .................................... 9
1.5. Structure of the paper ..................................... 9

Chapter 2. Formal Solutions .................................... 15

2.1. Differential of Gη ........................................ 15
2.2. Linearized equations at the origin and dispersion
     relation .................................................. 15
2.3. Formal computation of 3-dimensional waves ................. 17
2.4. Geometric pattern of diamond waves ........................ 20

Chapter 3. Linearized Operator ................................. 23

3.1. Linearized system in (ψ,η) ≠ 0 ............................ 23
3.2. Pseudodifferential operators and diffeomorphism of
     the torus ................................................. 25
3.3. Main orders of the diffeomorphism and coefficient ν ....... 33

Chapter 4. Small Divisors. Estimate of fig.3-Resolvent ............. 35

4.1. Proof of Theorem 4.10 ..................................... 41

Chapter 5. Descent Method-Inversion of the Linearized
           Operator ............................................ 51

5.1. Descent method ............................................ 52
5.2. Proof of Theorem 5.1 ...................................... 61
5.3. Verification of assumptions of Theorem 5.1 ................ 66
5.4. Inversion of fig.4 ............................................ 68

Chapter 6. Nonlinear Problem. Proof of Theorem 1.3 ............. 71

Appendix A. Analytical study of Gη ............................. 75

A.l. Computation of the differential of Gη ..................... 75
A.2. Second order Taylor expansion of Gη in η = 0 .............. 77

Appendix B. Formal computation of 3-dimensional waves .......... 79

B.l. Formal Fredholm alternative ............................... 79
B.2. Bifurcation equation ...................................... 81

Appendix C. Proof of Lemma 3.6 ................................. 87

Appendix D. Proofs of Lemmas 3.7 and 3.8 ....................... 89

Appendix E. Distribution of Numbers {W0n2} ..................... 93

Appendix F. Pseudodifferential Operators ....................... 99

Appendix G. Dirichlet-Neumann Operator ........................ 107

Appendix H. Proof of Lemma 5.8 ................................ 119

Appendix I. Fluid particles dynamics .......................... 123

Bibliography .................................................. 127


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:16 2019. Размер: 6,719 bytes.
Посещение N 1853 c 15.09.2009