Applied mathematical sciences; 164 (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBoundary integral equations / Hsiao G.C., Wendland W.L. - Berlin; Heidelberg: Springer, 2008. - xix, 618 p.: ill. - (Applied mathematical sciences; 164). - Ref.: p.599-612. - Ind.: p.613-618. - ISBN 978-3-540-15284-2; ISSN 0066-5452 - ISBN 978-90-5948-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... VII

1. Introduction ................................................. 1
   1.1. The Green Representation Formula ........................ 1
   1.2. Boundary Potentials and Calderon's Projector ............ 3
   1.3. Boundary Integral Equations ............................ 10
        1.3.1. The Dirichlet Problem ........................... 11
        1.3.2. The Neumann Problem ............................. 12
   1.4. Exterior Problems ...................................... 13
        1.4.1. The Exterior Dirichlet Problem .................. 13
        1.4.2. The Exterior Neumann Problem .................... 15
   1.5. Remarks ................................................ 19
2. Boundary Integral Equations ................................. 25
   2.1. The Helmholtz Equation ................................. 25
        2.1.1. Low Frequency Behaviour ......................... 31
   2.2. The Lame System ........................................ 45
        2.2.1. The Interior Displacement Problem ............... 47
        2.2.2. The Interior Traction Problem ................... 55
        2.2.3. Some Exterior Fundamental Problems .............. 56
        2.2.4. The Incompressible Material ..................... 61
   2.3. The Stokes Equations ................................... 62
        2.3.1. Hydrodynamic Potentials ......................... 65
        2.3.2. The Stokes Boundary Value Problems .............. 66
        2.3.3. The Incompressible Material - Revisited ......... 75
   2.4. The Biharmonic Equation ................................ 79
        2.4.1. Calderon's Projector ............................ 83
        2.4.2. Boundary Value Problems and Boundary
               Integral Equations .............................. 85
   2.5. Remarks ................................................ 91
3. Representation Formulae ..................................... 95
   3.1. Classical Function Spaces and Distributions ............ 95
   3.2. Hadamard's Finite Part Integrals ...................... 101
   3.3. Local Coordinates ..................................... 108
   3.4. Short Excursion to Elementary Differential Geometry ... 1ll
        3.4.1. Second Order Differential Operators
               in Divergence Form ............................. 119
   3.5. Distributional Derivatives and Abstract Green's
        Second Formula ........................................ 126
   3.6. The Green Representation Formula ...................... 130
   3.7. Green's Representation Formulae in Local
        Coordinates ........................................... 135
   3.8. Multilayer Potentials ................................. 139
   3.9. Direct Boundary Integral Equations .................... 145
        3.9.1. Boundary Value Problems ........................ 145
        3.9.2. Transmission Problems .......................... 155
   3.10.Remarks ............................................... 157
4. Sobolev Spaces ............................................. 159
   4.1. The Spaces HS(Ω) ...................................... 159
   4.2. The Trace Spaces Нs(Г) ................................ 169
        4.2.1. Trace Spaces for Periodic Functions on
               a Smooth Curve in IR2 .......................... 181
        4.2.2. Trace Spaces on Curved Polygons in IR2 ......... 185
   4.3. The Trace Spaces on an Open Surface ................... 189
   4.4. Weighted Sobolev Spaces ............................... 191
5. Variational Formulations ................................... 195
   5.1. Partial Differential Equations of Second Order ........ 195
        5.1.1. Interior Problems .............................. 199
        5.1.2. Exterior Problems .............................. 204
        5.1.3. Transmission Problems .......................... 215
   5.2. Abstract Existence Theorems for Variational
        Problems .............................................. 218
        5.2.1. The Lax-Milgram Theorem ........................ 219
   5.3. The Fredholm-Nikolski Theorems ........................ 226
        5.3.1. Fredholm's Alternative ......................... 226
        5.3.2. The Riesz-Schauder and the Nikolski Theorems ... 235
        5.3.3. Fredholm's Alternative for Sesquilinear
               Forms .......................................... 240
        5.3.4. Fredholm Operators ............................. 241
   5.4. Garding's Inequality for Boundary Value Problems ...... 243
        5.4.1. Garding's Inequality for Second Order
               Strongly  Elliptic Equations in Ω .............. 243
        5.4.2. The Stokes System .............................. 250
        5.4.3. Garding's Inequality for Exterior Second
               Order Problems ................................. 254
        5.4.4. Garding's Inequality for Second Order
               Transmission Problems .......................... 259
   5.5. Existence of Solutions to Boundary Value Problems ..... 259
        5.5.1. Interior Boundary Value Problems ............... 260
        5.5.2. Exterior Boundary Value Problems ............... 264
        5.5.3. Transmission Problems .......................... 264
   5.6. Solution of Integral Equations via Boundary Value
        Problems .............................................. 265
        5.6.1. The Generalized Representation Formula for
               Second Order Systems ........................... 265
        5.6.2. Continuity of Some Boundary Integral
               Operators ...................................... 267
        5.6.3. Continuity Based on Finite Regions ............. 270
        5.6.4. Continuity of Hydrodynamic Potentials .......... 272
        5.6.5. The Equivalence Between Boundary Value 
               Problems and Integral Equations ................ 274
        5.6.6. Variational Formulation of Direct Boundary
               Integral Equations ............................. 277
        5.6.7. Positivity and Contraction of Boundary
               Integral Operators ............................. 287
        5.6.8. The Solvability of Direct Boundary Integral
               Equations ...................................... 291
        5.6.9. Positivity of the Boundary Integral
               Operators of the Stokes System ................. 292
   5.7. Partial Differential Equations of Higher Order ........ 293
   5.8. Remarks ............................................... 299
        5.8.1. Assumptions on Г ............................... 299
        5.8.2. Higher Regularity of Solutions ................. 299
        5.8.3. Mixed Boundary Conditions and Crack Problem .... 300
6. Introduction to Pseudodifferential Operators ............... 303
   6.1. Basic Theory of Pseudodifferential Operators .......... 303
   6.2. Elliptic Pseudodifferential Operators on Ω ⊂ IRn ...... 326
        6.2.1. Systems of Pseudodifferential Operators ........ 328
        6.2.2. Parametrix and Fundamental Solution ............ 331
        6.2.3. Levi Functions for Scalar Elliptic Equations ... 334
        6.2.4. Levi Functions for Elliptic Systems ............ 341
        6.2.5. Strong Ellipticity and Garding's Inequality .... 343
   6.3. Review on Fundamental Solutions ....................... 346
        6.3.1. Local Fundamental Solutions .................... 347
        6.3.2. Fundamental Solutions in IRn for Operators
               with Constant Coefficients ..................... 348
        6.3.3. Existing Fundamental Solutions in
               Applications ................................... 352
7. Pseudodifferential Operators as Integral Operators ......... 353
   7.1. Pseudohomogeneous Kernels ............................. 353
        7.1.1. Integral Operators as Pseudodifferential
               Operators of Negative Order .................... 356
        7.1.2. Non-Negative Order Pseudodifferential
               Operators as Hadamard Finite Part Integral
               Operators ...................................... 380
        7.1.3. Parity Conditions .............................. 389
        7.1.4. A Summary of the Relations between Kernels
               and Symbols .................................... 392
   7.2. Coordinate Changes and Pseudohomogeneous Kernels ...... 394
        7.2.1. The Transformation of General Hadamard
               Finite Part Integral Operators under Change
               of Coordinates ................................. 397
        7.2.2. The Class of Invariant Hadamard Finite Part 
               Integral Operators under Change of
               Coordinates .................................... 404
8. Pseudodifferential and Boundary Integral Operators ......... 413
   8.1. Pseudodifferential Operators on Boundary Manifolds .... 414
        8.1.1. Ellipticity on Boundary Manifolds .............. 418
        8.1.2. Schwartz Kernels on Boundary Manifolds ......... 420
   8.2. Boundary Operators Generated by Domain
        Pseudodifferential Operators .......................... 421
   8.3. Surface Potentials on the Plane IRn-1 ................. 423
   8.4. Pseudodifferential Operators with Symbols of 
        Rational Type ......................................... 446
   8.5. Surface Potentials on the Boundary Manifold Г ......... 467
   8.6. Volume Potentials ..................................... 476
   8.7. Strong Ellipticity and Fredholm Properties ............ 479
   8.8. Strong Ellipticity of Boundary Value Problems
        and Associated Boundary Integral Equations ............ 485
        8.8.1. The Boundary Value and Transmission Problems ... 485
        8.8.2. The Associated Boundary Integral Equations
               of the First Kind .............................. 488
        8.8.3. The Transmission Problem and Garding's
               inequality ..................................... 489
   8.9. Remarks ............................................... 491
9. Integral Equations on Г ⊂ IR3 Recast as
   Pseudodifferential Equations ............................... 493
   9.1. Newton Potential Operators for Elliptic Partial
        Differential Equations and Systems .................... 499
        9.1.1. Generalized Newton Potentials for the
               Helmholtz Equation ............................. 502
        9.1.2. The Newton Potential for the Lame System ....... 505
        9.1.3. The Newton Potential for the Stokes System ..... 506
   9.2. Surface Potentials for Second Order Equations ......... 507
        9.2.1. Strongly Elliptic Differential Equations ....... 510
        9.2.2. Surface Potentials for the Helmholtz
               Equation ....................................... 514
        9.2.3. Surface Potentials for the Lame System ......... 519
        9.2.4. Surface Potentials for the Stokes System ....... 524
   9.3. Invariance of Boundary Pseudodifferential Operators ... 524
        9.3.1. The Hypersingular Boundary Integral
               Operators for the Helmholtz Equation ........... 525
        9.3.2. The Hypersingular Operator for the Lame
               System ......................................... 531
        9.3.3. The Hypersingular Operator for the Stokes
               System ......................................... 535
   9.4. Derivatives of Boundary Potentials .................... 535
        9.4.1. Derivatives of the Solution to the Helmholtz
               Equation ....................................... 541
        9.4.2. Computation of Stress and Strain on the
               Boundary for the Lame System ................... 543
   9.5. Remarks ............................................... 547
10.Boundary Integral Equations on Curves in IR2 ............... 549
   10.1.Fourier Series Representation of the Basic
        Operators ............................................. 550
   10.2.The Fourier Series Representation of Periodic
        Operators А ∈ Lfig.2 (Г) ................................. 556
   10.3.Ellipticity Conditions for Periodic Operators on Г .... 562
        10.3.1.Scalar Equations ............................... 563
        10.3.2.Systems of Equations ........................... 568
        10.3.3.Multiply Connected Domains ..................... 572
   10.4.Fourier Series Representation of some Particular
        Operators ............................................. 574
        10.4.1.The Helmholtz Equation ......................... 574
        10.4.2.The Lame System ................................ 578
        10.4.3.The Stokes System .............................. 581
        10.4.4.The Biharmonic Equation ........................ 582
10.5.Remarks .................................................. 591

A. Differential Operators in Local Coordinates with Minimal
   Differentiability .......................................... 593

References .................................................... 599

Index ......................................................... 613


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:16 2019. Размер: 17,077 bytes.
Посещение N 2353 c 15.09.2009