List of Tables ................................................. ix
Preface ........................................................ xi
Part I. Invariants, especially modulo an odd prime .............. 1
1. Definitions and notations .................................... 2
2. Invariants of μn ............................................. 5
3. Quasi-Galois extensions and invariants of /p .............. 7
4. An example: the mod p Bockstein map ......................... 10
5. Restricting invariants ...................................... 12
6. Mod p invariants of PGLP .................................... 14
7. Extending invariants ........................................ 17
8. Mod 3 invariants of Albert algebras ......................... 19
Part II. Surjectivities and invariants of Е6, E7, and Е8 ........ 23
9. Surjectivities: internal Chevalley modules .................. 24
10. New invariants from homogeneous forms ...................... 29
11. Mod 3 invariants of simply connected E6 .................... 31
12. Surjectivities: the highest root ........................... 33
13. Mod 3 invariants of Е7 ..................................... 38
14. Construction of groups of type E8 .......................... 39
15. Mod 5 invariants of E8 ..................................... 44
Part III. Spin groups .......................................... 47
16. Introduction to Part III ................................... 48
17. Surjectivities: Spinn for 7 ≤ n ≤ 12 ....................... 48
18. Invariants of Spinn for 7 ≤ n ≤ 10 ......................... 53
19. Divided squares in the Grothendieck-Witt ring .............. 56
20. Invariants of Spinn and Spin12 ............................. 58
21. Surjectivities: Spin14 ..................................... 61
22. Invariants of Spin14 ....................................... 65
23. Partial summary of results ................................. 66
Appendices ..................................................... 69
A. Examples of anisotropic groups of type E7 ................... 70
B. A generalization of the Common Slot Theorem ................. 73
By Detlev W. Hoffmann
Bibliography ................................................... 77
Index .......................................................... 81
|