Solgaard O. Photonic microsystems: micro and nanotechnology applied to optical devices and systems (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSolgaard O. Photonic microsystems: micro and nanotechnology applied to optical devices and systems. - New York: Springer, 2009. - vi, 631 p. - (MEMS reference shelf). - Incl. bibl. ref. - Ind.: p.626-631. - ISBN 978-0-387-29022-5
 

Оглавление / Contents
 
1. Introduction to Optical Microsystems ......................... 1
   1.1. Scaling of Optics ....................................... 1
   1.2. Design of miniaturized optics ........................... 3
   1.3. Roadmap ................................................. 4
   References ................................................... 8
2. Electromagnetic Fields ands Energy .......................... 10
   2.1. Introduction to Fields and Energy ...................... 10
   2.2. From Maxwell's Equations to the Wave Equation .......... 11
   2.3. Plane Waves ............................................ 14
   2.4. Phasor Notation ........................................ 18
        2.4.1. Michelson Interferometer-Phasor notation ........ 20
   2.5. The Poynting Theorem ................................... 23
   2.6. Combination of Optical Fields from Separate Sources .... 26
   2.7. Analysis Based on Energy Conservation - Examples ....... 28
        2.7.1. "Collimated optical beam" ....................... 28
        2.7.2. Combination of optical beams - Fan-in ........... 29
        2.7.3. Optical devices with two inputs and two
               outputs - General Case .......................... 30
        2.7.4. Dielectric interface ............................ 31
        2.7.5. Y-coupler ....................................... 32
        2.7.6. Fan-in loss ..................................... 33
        2.7.7. Practical beam combiner ......................... 34
        2.7.8. Wavelength Division Multiplexing ................ 34
   2.8. Summary of Fields and Waves ............................ 36
   Further Reading ............................................. 38
   Exercises ................................................... 38
3. Plane Waves at Interfaces ................................... 42
   3.1. Introduction to Plane Waves ............................ 42
   3.2. Plane Waves at a Dielectric Interface - Fresnel
        Reflections ............................................ 43
        3.2.1. Laws of Reflection and Refraction 
               (Geometrical Optics) ............................ 43
        3.2.2. Fresnel Equations ............................... 45
        3.2.3. Numerical Evaluation of the Fresnel Equations ... 48
        3.2.3. Reflectance and Transmittance ................... 50
        3.2.4. Brewster Angle .................................. 51
   3.3. Wave description of Total Internal Reflection (TIR) .... 52
        3.3.1. Evanescent Fields ............................... 53
        3.3.2. Goos-Hanchen Shift .............................. 55
        3.3.3. Optical Devices Based on TIR .................... 55
   3.4. Multilayer Stacks ...................................... 57
   3.5. Applications of Layered Structures ..................... 60
        3.5.1. Anti-Reflection Coatings ........................ 61
        3.5.2. Bragg reflectors ................................ 62
        3.5.3. Photon Tunneling ................................ 63
        3.5.4. Surface Plasmons ................................ 65
   3.6. Summary of Plane Waves ................................. 67
   Exercises ................................................... 69
   References .................................................. 75
4. Diffraction and Gaussian Beams .............................. 76
   4.1. Introduction to Diffraction and Gaussian Beams ......... 76
   4.2. Paraxial Wave Equation ................................. 77
        4.2.1. The Fundamental Gaussian Profile ................ 78
        4.2.2. Beam Waist ...................................... 79
        4.2.3. Higher Order Gaussian Modes ..................... 81
   4.3. Gaussian Beam Transformation in Lenses ................. 84
   4.4. Resolution of a Lens ................................... 89
        4.4.1. Focusing into high-index media .................. 91
   4.5. Projecting Gaussian Beams .............................. 95
   4.6. Gaussian Beam "Imaging" ................................ 96
        4.6.1. Graphical Description of Gaussian Beam
               "Imaging" ....................................... 98
   4.7. Truncation of Gaussian Beams ........................... 99
        4.7.1. Energy loss due to Truncation of Gaussian
               Beams .......................................... 100
        4.7.2. Far-field of Truncated Gaussian Beams -
               Frauenhofer Diffraction ........................ 103
   4.8. Summary of Gaussian Beams ............................. 107
   Further Reading ............................................ 110
   Exercises .................................................. 1ll
   References ................................................. 114
5. Optical Fibers and Waveguides .............................. 116
   5.1. Introduction to Fibers and Waveguides ................. 116
   5.2. Geometrical optics description of waveguides .......... 116
   5.3. Three-layered Slab Waveguide .......................... 118
        5.3.1. Numerical Solutions to Eigenvalue Equations .... 121
        5.3.2. TM Solutions ................................... 122
        5.3.3. Nature of the Solutions ........................ 122
        5.3.4. Number of Modes ................................ 123
        5.3.5. Energy carried by a mode ....................... 125
        5.3.6. Properties of Modes ............................ 126
        5.3.7. Normalized propagation parameters .............. 127
   5.4. Optical Fibers ........................................ 129
        5.4.1. Modes in Step-Index Optical Fibers ............. 130
        5.4.2. Linearly Polarized Modes ....................... 131
        5.4.3. The Fundamental Mode of a Cylindrical
               Waveguide ...................................... 135
        5.4.4. Power Confinement .............................. 136
   5.5. Dispersion ............................................ 137
        5.5.1. Material Dispersion ............................ 138
               5.5.1.1. Frequency Dependent Dielectric
                        Constant .............................. 140
               5.5.1.2. Group Delay Caused by Material
                        Dispersion ............................ 142
        5.5.2. Waveguide Dispersion ........................... 143
        5.5.3. Modal Dispersion ............................... 144
        5.5.4. Total dispersion - Simultaneous Material,
               Modal and Waveguide Dispersion ................. 146
   5.6. Pulse Spreading on Fibers ............................. 148
        5.6.1. Pulse Broadening ............................... 150
        5.6.2. Frequency Chirp ................................ 152
        5.6.3. Dispersion Compensation ........................ 153
        5.6.4. Dispersion Expressed in Normalized Propagation
               Parameters ..................................... 154
        5.6.5. Single-Mode Dispersion Expressed in
               Normalized Parameters .......................... 157
        5.6.6. Single Mode Fiber Design ....................... 158
   5.7. Fiber Calculation Example ............................. 159
   5.8. Summary of Fibers and Waveguides ...................... 160
   Further Reading ............................................ 165
   Exercises .................................................. 166
   References ................................................. 172
6. Fiber and Waveguide Devices ................................ 174
   6.1. Introduction to Fiber and Waveguide Devices ........... 174
   6.2. Coupling to Fibers and Waveguides ..................... 175
        6.2.1. Loss in Single Mode Fiber Splices .............. 177
        6.2.2. Coupling Coefficients .......................... 179
        6.2.3. Laser to Single-Mode-Fiber Coupling ............ 181
        6.2.4. Laser-Mode Size Measurements Using the Knife-
               Edge Method .................................... 182
        6.2.5. Coupling from Spatially Incoherent Sources
               to Multi Mode Fibers ........................... 184
        6.2.6. Coupling between Spatially Coherent Sources
               and Multimode Fibers ........................... 185
        6.2.7. Coupling from Spatially Incoherent Sources
               to Single Mode Fibers .......................... 185
        6.2.8. Prism Coupling ................................. 185
        6.2.9. Grating Coupling ............................... 187
   6.3. Coupled Optical Modes ................................. 189
   6.4. Directional Couplers .................................. 193
        6.4.1. Coupled Mode Description of Directional
               Couplers ....................................... 195
        6.4.2. Eigenmodes of the Coupled System ............... 200
        6.4.3. Conceptual Description of Directional
               Couplers based on Eigen Modes .................. 203
   6.5. Optical Devices Based on Directional Couplers ......... 204
        6.5.1. Modulators and Switches based on Directional
               Couplers ....................................... 205
        6.5.2. Power Combiners and Filters based on
               Directional Couplers ........................... 207
   6.6. Periodic Waveguides - Bragg Filters. 208
        6.6.1. Energy Conservation in Counter Propagating
               Waves .......................................... 210
        6.6.2. Modes of the Bragg Grating ..................... 211
        6.6.3. One-Dimensional Photonic Bandgaps .............. 212
        6.6.4. Bragg Filters .................................. 213
   6.7. Waveguide Modulators .................................. 215
        6.7.1. Mach-Zender modulators ......................... 215
        6.7.2. Figures of Merit for Optical Modulators ........ 217
        6.7.3. Phase Modulation ............................... 218
        6.7.4. Acoustooptic Modulators ........................ 221
        6.7.5. Modified Mach-Zender Modulators ................ 221
        6.7.6. Directional Coupler Switches ................... 222
        6.7.7. Fabry-Perot Modulator .......................... 223
        6.7.8. Resonant Waveguide Coupling .................... 224
   6.8. Summary of Fiber and Waveguide Devices ................ 231
   Exercises .................................................. 232
   References ................................................. 245
7. Otical MEMS Scanners ....................................... 246
   7.1. Introduction to MEMS Scanners ......................... 246
   7.2. Scanner Resolution .................................... 248
        7.2.1. Resolution of an Ideal Scanner ................. 249
        7.2.2. Optimum Resolution of a Scanned Gaussian Beam .. 251
        7.2.3. Scanner Aperture ............................... 253
        7.2.4. Surface Roughness, Curvature, and Bending
               of Micro Mirrors ............................... 255
   7.3. Reflectivity of Metal Coated Micromirrors ............. 265
   7.4. Lens Scanners ......................................... 268
   7.5. Mechanical Scanner Design - One Dimensional Scanners .. 270
        7.5.1. Transformation from Linear Motion to Rotation .. 270
        7.5.2. Torsional Spring Design ........................ 272
        7.5.3. Mechanical Resonances .......................... 275
        7.5.4. Higher-Order Mechanical Resonances ............. 278
   7.6. Two Dimensional Scanners .............................. 281
   7.7. High Resolution 2-D Scanners - Design Examples ........ 284
        7.7.1. Gimbaled Scanner ............................... 284
        7.7.2. Universal Joint Microscanner with "Terraced-
               Plate" Actuators ............................... 287
        7.7.3. Universal Joint Microscanner with Combdrive
               Actuators ...................................... 288
   7.8. Summary of MEMS scanners .............................. 289
   Exercises .................................................. 291
   References ................................................. 293
8. Optical MEMS Fiber Switches ................................ 296
   8.1. Introduction to MEMS Fiber Switches ................... 296
   8.2. Fiber Optical Switches and Cross Connects ............. 297
   8.3. MEMS Switch Architectures ............................. 299
   8.4. 2 by 2 Matrix Switch .................................. 304
        8.4.1. Fiber Separation in 2 by 2 MEMS Switches ....... 304
        8.4.2. Mirror Thickness in 2 by 2 Matrix Switches ..... 306
        8.4.3. Low-loss 2 by 2 Matrix Switches ................ 308
        8.4.4. MEMS Implementation of 2 by 2 Fiber Switch ..... 309
   8.5. N by N Matrix Switches ................................ 311
        8.5.1. Scaling of N by N Matrix Switch ................ 313
        8.5.2. MEMS Implementations of N by N Matrix Switch ... 316
   8.6. N by N Beam Steering Switches ......................... 317
        8.6.1. Scaling of the Beam Steering Switch ............ 318
        8.6.2. MEMS Implementations of the N by N Beam
               Steering Switch ................................ 325
   8.7. Summary of MEMS Fiber Switches ........................ 327
   Exercises .................................................. 329
   References ................................................. 331
9. Micromirror Arrays - Amplitude and Phase Modulation ........ 332
   9.1. Introduction to Micromirror Arrays .................... 332
   9.2. Amplitude Modulating Mirror Arrays .................... 333
        9.2.1.  Projection Display ............................ 334
   9.3. Projection of Micromirror Arrays ...................... 338
        9.3.1. The Point Spread Function ...................... 339
        9.3.2. Image formation with finite Point Spread 
               Functions ...................................... 344
        9.3.3. Projection of a Gaussian Source ................ 345
        9.3.4. Projection of a Gaussian Micromirror ........... 347
        9.3.5. Projection of a 1-D Gaussian Source ............ 349
   9.4. Micromirrors with Phase Modulation .................... 349
        9.4.1.  Projection of a Phase Step .................... 350
        9.4.2. Projection of a Phase Modulated Line ........... 353
        9.4.3. Sub-Pixel Shifts in Phase-Modulated
               Micromirror arrays ............................. 356
   9.5. Projection of Micromirrors through Hard Apertures ..... 356
   9.6. Adaptive Optics ....................................... 358
        9.6.1. Micromirror Arrays for Adaptive Optics ......... 360
   9.7. Phase vs. Amplitude Modulation ........................ 362
        9.7.1. Diffractive Optical MEMS ....................... 364
   9.8. Summary of Micromirror Arrays ......................... 368
   Exercises .................................................. 369
   References ................................................. 371
10.Grating Light Modulators ................................... 374
   10.1.Introduction to Grating Light Modulators .............. 374
   10.2.Phenomenological Description of MEMS Grating 
        Modulators ............................................ 374
        10.2.1.Mechanical design and actuation of Grating
               Light Modulators ............................... 374
        10.2.2.Optical Design and Operation of Grating Light
               Modulators ..................................... 377
        10.2.3.Schlieren Projection System .................... 379
   10.3.Phasor Representation of Grating Modulator Operation .. 380
   10.4.High Contrast Grating Light Modulator ................. 386
   10.5.Diffraction gratings .................................. 389
   10.6.Projection Displays Based on Grating Modulators ....... 403
        10.6.1.Actuator Design ................................ 403
        10.6.2.Ribbon Mechanics ............................... 407
        10.6.3.Linear Display Architecture .................... 411
        10.6.4.1-D Modulator Array Fabrication ................ 414
        10.6.5.Light Sources for swept-line projection
               displays ....................................... 418
   10.7.Summary of Grating Light Modulators ................... 422
   Exercises .................................................. 423
   References ................................................. 425
11.Grating Light Modulators for Fiber Optics .................. 428
   11.1.Fiber Optic Modulators ................................ 428
   11.2.Low Dispersion Grating Light Modulators ............... 430
        11.2.1.Three-level Grating Light Modulator ............ 430
        11.2.2.Optimum Design of Three-Level Grating 
               Modulator ...................................... 433
        11.2.3.Contrast in the Three-level Grating Modulator .. 435
        11.2.4.Wavelength Dependence of Attenuation ........... 437
        11.2.5.Alternative Modulator Architectures ............ 439
   11.3.Polarization Independent Grating Light Modulators ..... 440
   11.4.Summary of GLMS for Fiber Optics ...................... 444
   Further Reading ............................................ 444
   Exercises .................................................. 445
   References ................................................. 446
12.Optical Displacement Sensors ............................... 448
   12.1.Introduction to Optical Displacement Sensors .......... 448
   12.2.Interferometers as Displacement Sensors ............... 451
        12.2.1.The Michelson Interferometer ................... 451
        12.2.2.Displacement Sensitivity ....................... 454
        12.2.3.Implementations of Interferometric
               Displacement Sensors ........................... 455
        12.2.4.Improved Sensitivity of High-Finesse 
               Interferometers ................................ 460
       12.2.5.Effect of Apertures in Interferometers .......... 466
   12.3.Optical Lever ......................................... 469
        12.3.1.Displacement and Angle Sensitivity of the
               Optical Lever .................................. 471
        12.3.2.Grating Optical Lever .......................... 472
   12.4.Sources of Noise in Displacement Measurements ......... 473
        12.4.1.Thermal Noise .................................. 474
        12.4.2.Shot Noise ..................................... 475
        12.4.3.Relative Intensity Noise ....................... 475
   12.5.Signal-to-Noise Ratio ................................. 476
        12.5.1.Noise Equivalent Power ......................... 478
   12.6.Detection Limits in displacement measurements ......... 479
        12.6.1.Resolution of Optical Interferometers .......... 479
        12.6.2.Resolution of Optical Levers ................... 481
        12.6.3.Resolution of Capacitive Sensors ............... 481
        12.6.4.Resolution of Piezoresistive Sensors ........... 483
        12.6.5.Comparison of Displacement Sensors ............. 485
   12.7.Summary of Optical Displacement Sensors ............... 486
   Exercises .................................................. 487
   References ................................................. 489
13.Micro-Optical Filters ...................................... 490
   13.1.Introduction to Micro-Optical Filters ................. 490
   13.2.Amplitude Filters ..................................... 491
        13.2.1.Fabry-Perot Filters ............................ 491
        13.2.2.Bragg Filters .................................. 495
        13.2.3.Microresonator Filters ......................... 495
   13.3.Dispersion compensators ............................... 498
   13.4.MEMS Spectrometers .................................... 500
        13.4.1.Swept Pass Band Spectrometers .................. 501
        13.4.2.Generalized Transform Spectrometers ............ 502
        13.4.3.Fourier Transfer Spectrometers ................. 503
        13.4.4.MEMS Implementations of Transform
               Spectrometers .................................. 507
   13.5.Diffractive Spectrometers ............................. 511
        13.5.1.Spectral Synthesis ............................. 511
        13.5.2.Diffractive MEMS Spectrometers ................. 514
   13.6.Tunable lasers ........................................ 517
        13.6.1.MEMS Vertical Cavity Surface Emitting Lasers ... 518
        13.6.2.MEMS External Cavity Semiconductor Diode
               Lasers ......................................... 519
        13.6.3.Tunable External Cavity Semiconductor Diode
               Lasers with Diffractive Filters ................ 522
   13.7.Summary of Microoptical Filters ....................... 523
   Exercises .................................................. 524
   References ................................................. 527
14.Photonic Crystal Fundamentals .............................. 532
   14.1.Introduction to Photonic Crystals ..................... 532
   14.2.Photonic Crystal Basics ............................... 533
        14.2.1.1-D Photonic Crystals .......................... 535
        14.2.2.Bloch States ................................... 538
        14.2.3.Band Structure of 2-D and 3-D Photonic
               Crystals ....................................... 539
   14.3.Guided Resonances ..................................... 543
        14.3.1.Reflection and Transmission through 2-D
               Photonic Crystals .............................. 544
        14.3.2.Reflection and Transmission for a Mirror-
               Symmetric 2-port with one Guided Resonance ..... 546
        14.3.3.Reflection and Transmission for a Mirror-
               Symmetric 2-port with two Guided Resonances .... 549
        14.3.4.Coupling to Guided Resonances - Symmetry ....... 551
   14.4.Comparison of Photonic and Electronic Crystals ........ 553
   14.5.Summary of PC fundamentals ............................ 555
   Exercises .................................................. 556
   References ................................................. 557
15.Photonic Crystal Devices and Systems ....................... 560
   15.1.Introduction to PC devices and systems ................ 560
   15.2.1С Compatible Photonic Crystals ....................... 561
        15.2.1.Silicon Compatible 2-D Photonic Crystals ....... 561
        15.2.2.3-D Structuring of Photonic Crystals ........... 566
   15.3.Photonic Crystal Optical Components ................... 567
        15.3.1.Mirrors and Filters ............................ 568
        15.3.2.Photonic Crystal Fabry-Perot Resonators ........ 569
        15.3.3.PC Tunneling Sensors ........................... 570
        15.3.4.PC Polarization Optics ......................... 571
        15.3.5.PC Index Sensors ............................... 571
   15.4.Tunable Photonic Crystals ............................. 573
        15.4.1.Photonic Crystal MEMS Scanners ................. 574
        15.4.2.Photonic Crystal Displacement Sensors .......... 577
   15.5.Photonic Crystal Fiber Sensors ........................ 579
   15.6.Summary of PC devices and systems ..................... 581
   Exercises .................................................. 582
   References ................................................. 583

Appendix A. Geometrical Optics ................................ 588

   A.l. Introduction to Geometrical Optics .................... 588
   A.2. Geometrical Optics Treatment of Lenses ................ 588
        A.2.1.Lens - Ray Picture .............................. 588
        A.2.2.Lenses-Wave Picture ............................. 589
        A.2.3. Ray Tracing .................................... 590
   A.3. ABCD matrices ......................................... 591
        A.3.1. Free space ..................................... 592
        A.3.2. Slab of Index n ................................ 592
        A.3.3. Thin Lens ...................................... 593
        A.3.4. Curved Mirror .................................. 594
        A.3.5. Combinations of Elements ....................... 594
        A.3.6. Reverse transmission ........................... 595

Appendix В.Electrostatic Actuation ............................ 596

   B.l. The parallel Plate Capacitor .......................... 596
        B.l.l. Energy Storage in Parallel-Plate Capacitors .... 597
   B.2. The Parallel Plate Electrostatic Actuator ............. 599
        B.2.1. Charge Control ................................. 600
        B.2.2. Voltage Control ................................ 602
   B.3.Energy Conservation in the Parallel Plate
       Electrostatic Actuator ................................. 606
   B.4. Electrostatic Spring .................................. 610
        B.4.1. Sensors Based on the Electrostatic Spring ...... 613
   B.5. Electrostatic Combdrives .............................. 614
   B.6. Summary of Electrostatic Actuation .................... 620

References .................................................... 624

Index ......................................................... 626


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:14 2019. Размер: 29,442 bytes.
Посещение N 1837 c 01.09.2009