Shishkin G.I. Difference methods for singular perturbation problems (Boca Raton; London, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаShishkin G.I. Difference methods for singular perturbation problems / Shishkin G.I., Shishkina L.P. - Boca Raton; London: Chapman & Hall / CRC, 2009. - xv, 393 p. - (Chapman & Hall / CRC monographs and surveys in pure and applied mathematics; 140). - Ref.: p.371-388. - Ind.: p.389-393. - ISBN 978-1-58488-459-0 050 - ISBN 978-90-5948-3
 

Оглавление / Contents
 
Preface ...................................................... xiii

I. Grid approximations of singular perturbation partial
   differential equations ....................................... 1

1. Introduction ................................................. 3
   1.1. The development of numerical methods for singularly
        perturbed problems ...................................... 3
   1.2. Theoretical problems in the construction of
        difference schemes ...................................... 6
   1.3. The main principles in the construction of special
        schemes ................................................. 8
   1.4. Modern trends in the development of special
        difference schemes ..................................... 10
   1.5. The contents of the present book ....................... 11
   1.6. The present book ....................................... 12
   1.7. The audience for this book ............................. 16
2. Boundary value problems for elliptic reaction-diffusion
   equations in domains with smooth boundaries ................. 17
   2.1. Problem formulation. The aim of the research ........... 17
   2.2. Estimates of solutions and derivatives ................. 19
   2.3. Conditions ensuring ε-uniform convergence of
        difference schemes for the problem on a slab ........... 26
        2.3.1. Sufficient conditions for ε-uniform
               convergence of difference schemes ............... 26
        2.3.2. Sufficient conditions for ε-uniform
               approximation of the boundary value problem ..... 29
        2.3.3. Necessary conditions for distribution of mesh
               points for ε-uniform convergence of
               difference schemes. Construction of condensing
               meshes .......................................... 33
   2.4. Monotone finite difference approximations of the
        boundary value problem on a slab, ε-uniformly
        convergent difference schemes .......................... 38
        2.4.1. Problems on uniform meshes ...................... 38
        2.4.2. Problems on piecewise-uniform meshes ............ 44
        2.4.3. Consistent grids on subdomains .................. 51
        2.4.4. Ј-uniformly convergent difference schemes ....... 57
   2.5. Boundary value problems in domains with curvilinear
        boundaries ............................................. 58
        2.5.1. A domain-decomposition-based difference
               scheme for the boundary value problem on
               a slab .......................................... 58
        2.5.2. A difference scheme for the boundary value
               problem in a domain with curvilinear boundary ... 67
3. Boundary value problems for elliptic react ion-diffusion
   equations in domains with piecewise-smooth boundaries ....... 75
   3.1. Problem formulation. The aim of the research ........... 75
   3.2. Estimates of solutions and derivatives ................. 76
   3.3. Sufficient conditions for ε-uniform convergence of
        a difference scheme for the problem on a
        parallelepiped ......................................... 85
   3.4. A difference scheme for the boundary value problem
        on a parallelepiped .................................... 89
   3.5. Consistent grids on subdomains ......................... 97
   3.6. A difference scheme for the boundary value problem
        in a domain with piecewise-uniform boundary ........... 102
4. Generalizations for elliptic reaction-diffusion
   equations .................................................. 109
   4.1. Monotonicity of continual and discrete Schwartz
        methods ............................................... 109
   4.2. Approximation of the solution in a bounded
        subdomain for the problem on a strip .................. 112
   4.3. Difference schemes of improved accuracy for the
        problem on a slab ..................................... 120
   4.4. Domain-decomposition method for improved iterative
        schemes ............................................... 125
5. Parabolic reaction-diffusion equations ..................... 133
   5.1. Problem formulation ................................... 133
   5.2. Estimates of solutions and derivatives ................ 134
   5.3. 6-uniformly convergent difference schemes ............. 145
        5.3.1. Grid approximations of the boundary value
               problem ........................................ 146
        5.3.2. Consistent grids on a slab ..................... 147
        5.3.3. Consistent grids on a parallelepiped ........... 154
   5.4. Consistent grids on subdomains ........................ 158
        5.4.1. The problem on a slab .......................... 158
        5.4.2. The problem on a parallelepiped ................ 161
6. Elliptic convection-diffusion equations .................... 165
   6.1. Problem formulation ................................... 165
   6.2. Estimates of solutions and derivatives ................ 166
        6.2.1. The problem solution on a slab ................. 166
        6.2.2. The problem on a parallelepiped ................ 169
   6.3. On construction of ε-uniformly convergent
        difference schemes under their monotonicity
        condition ............................................. 176
        6.3.1. Analysis of necessary conditions for
               ε-uniform convergence of difference schemes .... 177
        6.3.2. The problem on a slab .......................... 180
        6.3.3. The problem on a parallelepiped ................ 183
   6.4. Monotone Ј-uniformly convergent difference schemes .... 185
7. Parabolic convection-diffusion equations ................... 191
   7.1. Problem formulation ................................... 191
   7.2. Estimates of the problem solution on a slab ........... 192
   7.3. Estimates of the problem solution on
        a parallelepiped ...................................... 199
   7.4. Necessary conditions for ε-uniform convergence of
        difference schemes .................................... 206
   7.5. Sufficient conditions for ε-uniform convergence of
        monotone difference schemes ........................... 210
   7.6. Monotone ε-uniformly convergent difference schemes .... 213

II Advanced trends in ε-uniformly convergent difference
   methods .................................................... 219

8. Grid approximations of parabolic reaction-diffusion
   equations with three perturbation parameters ............... 221
   8.1. Introduction .......................................... 221
   8.2. Problem formulation. The aim of the research .......... 222
   8.3. A priori estimates .................................... 224
   8.4. Grid approximations of the initial-boundary value
        problem ............................................... 230
9. Application of widths for construction of difference
   schemes for problems with moving boundary layers ........... 235
   9.1. Introduction .......................................... 235
   9.2. A boundary value problem for a singularly perturbed
        parabolic reaction-diffusion equation ................. 237
        9.2.1. Problem (9.2), (9.1) ........................... 237
        9.2.2. Some definitions ............................... 238
        9.2.3. The aim of the research ........................ 240
   9.3. A priori estimates .................................... 241
   9.4. Classical finite difference schemes ................... 243
   9.5. Construction of e-uniform and almost ε-uniform
       approximations to solutions of problem (9.2), (9.1) .... 246
   9.6. Difference scheme on a grid adapted in the moving
        boundary layer ........................................ 251
   9.7. Remarks and generalizations ........................... 254
10.High-order accurate numerical methods for singularly
   perturbed problems ......................................... 259
   10.1.Introduction .......................................... 259
   10.2.Boundary value problems for singularly perturbed
        parabolic convection-diffusion equations with
        sufficiently smooth data .............................. 261
        10.2.1.Problem with sufficiently smooth data .......... 261
        10.2.2.A finite difference scheme on an arbitrary
               grid ........................................... 262
        10.2.3.Estimates of solutions on uniform grids ........ 263
        10.2.4.Special e-uniform convergent finite
               difference scheme .............................. 263
        10.2.5.The aim of the research ........................ 264
   10.3.A priori estimates for problem with sufficiently
        smooth data ........................................... 265
   10.4.The defect correction method .......................... 266
   10.5.The Richardson extrapolation scheme ................... 270
   10.6.Asymptotic constructs ................................. 273
   10.7.A scheme with improved convergence for finite
        values of ε ........................................... 275
   10.8.Schemes based on asymptotic constructs ................ 277
   10.9.Boundary value problem for singularly perturbed
        parabolic convection-diffusion equation with
        piecewise-smooth initial data ......................... 280
        10.9.1.Problem (10.56) with piecewise-smooth
               initial data ................................... 280
        10.9.2.The aim of the research ........................ 281
   10.10.A priori estimates for the boundary value problem
        (10.56) with piecewise-smooth initial data ............ 282
   10.11.Classical finite difference approximations ........... 285
   10.12.Improved finite difference scheme .................... 287
11.A finite difference scheme on a priori adapted grids for
   a singularly perturbed parabolic convection-diffusion
   equation ................................................... 289
   11.1.Introduction .......................................... 289
   11.2.Problem formulation.The aim of the research ........... 290
   11.3.Grid approximations on locally refined grids that
        are uniform in subdomains ............................. 293
   11.4.Difference scheme on a priori adapted grid ............ 297
   11.5.Convergence of the difference scheme on a priori
        adapted grid .......................................... 303
   11.6.Appendix .............................................. 307
12.On conditioning of difference schemes and their matrices
   for singularly perturbed problems .......................... 309
   12.1.Introduction .......................................... 309
   12.2.Conditioning of matrices to difference schemes on
        piecewise-uniform and uniform meshes.Model problem
        for ODE ............................................... 311
   12.3.Conditioning of difference schemes on uniform and
        piecewise-uniform grids for the model problem ......... 316
   12.4.On conditioning of difference schemes and their
        matrices for a parabolic problem ...................... 323
13.Approximation of systems of singularly perturbed
   elliptic reaction-diffusion equations with two
   parameters ................................................. 327
   13.1.Introduction .......................................... 327
   13.2.Problem formulation.The aim of the research ........... 328
   13.3.Compatibility conditions.Some a priori estimates ...... 330
   13.4.Derivation of a priori estimates for the problem
       (13.2) under the condition (13.5) ...................... 333
   13.5.A priori estimates for the problem (13.2) under
        the conditions (13.4), (13.6) ......................... 341
   13.6.The classical finite difference scheme ................ 343
   13.7.The special finite difference scheme .................. 345
   13.8.Generalizations ....................................... 348
14.Survey ..................................................... 349
   14.1.Application of special numerical methods to
        mathematical modeling problems ........................ 349
   14.2.Numerical methods for problems with piecewise-
        smooth and nonsmooth boundary functions ............... 351
   14.3.On the approximation of solutions and derivatives ..... 352
   14.4.On difference schemes on adaptive meshes .............. 354
   14.5.On the design of constructive difference schemes
        for an elliptic convection-diffusion equation in
        an unbounded domain ................................... 357
        14.5.1.Problem formulation in an unbounded domain.
               The task of computing the solution in a
               bounded domain ................................. 357
        14.5.2.Domain of essential dependence for solutions
               of the boundary value problem .................. 359
        14.5.3.Generalizations ................................ 363
   14.6.Compatibility conditions for a boundary value
        problem on a rectangle for an elliptic convection-
        diffusion equation with a perturbation vector
        parameter ............................................. 364
        14.6.1.Problem formulation ............................ 365
        14.6.2.Compatibility conditions ....................... 366

References .................................................... 371

Index ......................................................... 389


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:14 2019. Размер: 17,756 bytes.
Посещение N 1811 c 01.09.2009