Nanostructured oxides (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanostructured oxides / ed. by Kumar C.S.S.R. - Weinheim: Wiley-VCH, 2009. - xxiii, 507 p.: ill. (some col.). - (Nanomaterials for the life sciences; 2). - Incl. bibl. ref. - Ind.: p.493-507. - ISBN 978-3-527-32152-0
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors .......................................... XIX
Part One Metal Oxide Nanomaterials .............................. 1

1. The Biomimetic Synthesis of Metal Oxide Nanomaterials ........ 3
      Leila F. Deravi, Joshua D. Swartz and David W. Wright

   1.1. Introduction ............................................ 3
   1.2. Metal Oxides in Nature .................................. 4
        1.2.1. Components of Biomineralization .................. 5
        1.2.2. Biomineralization Optimization ................... 6
   1.3. Biomimetic Synthesis of Metal Oxide Nanomaterials ....... 7
   1.4. Constrained Biomineralization ........................... 8
        1.4.1. Bacterial Synthesis of Metal Oxide
               Nanomaterials .................................... 8
        1.4.2. Synthesis of Protein-Functionalized
               Ferromagnetic Co304 Nanocrystals ................. 9
        1.4.3. Room-Temperature Synthesis of Barium Titanate ... 10
        1.4.4. Biomimetic Synthesis of Magnetite ............... 11
               1.4.4.1. Biomimetic Synthesis of Iron Oxide ..... 11
        1.4.5. Metal Oxide Synthesis within a Protein Cage-
               Ferritin ........................................ 14
               1.4.5.1. Mineralization of Non-Natural Metal
                        Oxides Using Ferritin .................. 14
               1.4.5.2. Mixed Mineralization Using Ferritin .... 14
        1.4.6. Viral Templates for Metal Oxide Synthesis ....... 15
        1.4.7. Hydrolysis of Metal Oxides Using Peptide
               Nanorings as Templates .......................... 16
               1.4.7.1. Enzymatic Peptide Nanoassembly of
                        Crystalline Ga2O3 ...................... 17
               1.4.7.2. Synthesis of Ferroelectric ВТ
                        Nanoparticles Using Peptide
                        Nanorings .............................. 18
        1.4.8. Synthesis of ZnO from Templated Butterfly
               Wings ........................................... 19
        1.4.9. Ionic Liquid-Assisted Co3O4 Synthesis ........... 20
        1.4.10.Conclusions ..................................... 21
   1.5. Mediated Mineralization ................................ 21
        1.5.1. The Three-Tier Architecture of Nacreous
               Layers .......................................... 22
        1.5.2. Echinoderms ..................................... 23
             1.5.2.1. Biomimetic Synthesis of Metal Oxides
                      Using Echinoderms as Inspiration ......... 24
        1.5.3. Diatoms ......................................... 28
               1.5.3.1. Biological Synthesis of Silica
                        Nanoparticles .......................... 30
               1.5.3.2. Biomimetic Synthesis of Silica
                        Nanoparticles .......................... 31
               1.5.3.3. Other Biomimetic Templates ............. 45
               1.5.3.4. Non-natural Metal Oxide Synthesis
                        Using Biomimetic Peptides .............. 47
        1.5.4. Conclusions ..................................... 48
   1.6. Future Perspectives: Processing Metal Oxide 
        Nanomaterials .......................................... 48
   References .................................................. 50

2. Synthesis of Symmetric and Asymmetric Nanosilica for
   Materials, Optical and Medical Applications ................. 55
      Yongquan Qu, Jennifer Lien and Ting Quo

   2.1. Introduction ........................................... 55
   2.2. Synthesis of Nanosilica ................................ 59
        2.2.1. Symmetric Nanosilica ............................ 59
               2.2.1.1. Catalytic Methods ...................... 63
               2.2.1.2. Noncatalytic Growth .................... 65
        2.2.2. Asymmetric Silica Nanomaterials ................. 68
               2.2.2.1. Catalytic Growth ....................... 68
               2.2.2.2. Noncatalytic Growth .................... 69
   2.3. Characterization ....................................... 70
   2.4. Applications of Symmetric and Asymmetric Nanosilica .... 72
        2.4.1. Symmetric Nanosilica ............................ 73
               2.4.1.1. Silica Nanomaterials as Drug
                        Delivery Vehicles ...................... 73
               2.4.1.2. Silica Nanomaterials as a Catalyst
                        Host and Sensors ....................... 76
               2.4.1.3. Silica Nanomaterials as Optical
                        Materials .............................. 76
               2.4.1.4. Nanosilica in Other Applications ....... 77
        2.4.2. Asymmetric Nanosilica ........................... 78
   2.5. Conclusions ............................................ 78
   Acknowledgments ............................................. 78
   References .................................................. 78

3. One-Dimensional Silica Structures and Their
   Applications to the Biological Sciences ..................... 83
      Daniel Choi, David Mcllroy, James Nagler,
      Eric Aston, Patrick Hrdlicka, Kurt Custin, 
      Rod Hill, Deborah Stenkamp and Joshua Branen

   3.1. Introduction ........................................... 83
   3.2. Synthesis of Silica Nanowires and Nanosprings .......... 84
        3.2.1. Catalyst Preparation and Application ............ 85
        3.2.2. Methods for VLS Synthesis of Nanowires .......... 86
               3.2.2.1. Flow Reaction Formation of Nanowires ... 86
        3.2.3. Laser Ablation of Nanowires ..................... 87
        3.2.4. Chemical Vapor Deposition and Plasma-
               Enhanced Chemical Vapor Deposition of
               Nanowires ....................................... 88
   3.3. Functionalization of Silica 1-D Silica Nanomaterials ... 90
   3.4. Toxicology Studies on 1-D Silica Nanomaterials ......... 94
        3.4.1. Intracellular Targeted Delivery ................. 94
        3.4.2. A Typical Cellular Targeting Strategy Using
               1-D NS-Based Nanostructures ..................... 94
               3.4.2.1. In Vitro Toxicity of 1-D
                        Nanostructures ......................... 97
               3.4.2.2. In Vivo Toxicity of 1-D
                        Nanostructures ......................... 99
   3.5. Biological Applications of 1-D Silica Nanomaterials ... 101
        3.5.1. Biodetection ................................... 101
   References ................................................. 103

4. Approaches to the Biofunctionalization of Spherical
   Silica Nanomaterials ....................................... 109
      Michihiro Nakamura

   4.1. Introduction .......................................... 109
   4.2. Silica Nanoparticles .................................. 112
        4.2.1. Inorganic Silica Nanoparticles ................. 113
        4.2.2. Organosilica Nanoparticles ..................... 114
               4.2.2.1. Organically Modified Silane
                        Nanoparticles (ORMOSIL
                        Nanoparticles) ........................ 114
               4.2.2.2. Functional Organosilica
                        Nanoparticles ......................... 115
               4.2.2.3. Multisilicate Nanoparticles ........... 119
   4.3. Biofunctionalization of Silica Nanoparticles .......... 122
        4.3.1. Surface Biofunctionalization ................... 123
               4.3.1.1. Surface Biofunctionalization of
                        Inorganic Silica Nanoparticles ........ 123
               4.3.1.2. Surface Biofunctionalization of
                        Organosilica Nanoparticles ............ 126
        4.3.2. Internal Biofunctionalization .................. 133
               4.3.2.1. An Overview ........................... 133
               4.3.2.2. Preparation of Fluorescent Silica
                        Nanoparticles ......................... 134
   4.4. Applications .......................................... 144
        4.4.1. Advantages of Biofunctionalized Silica
               Nanoparticles .................................. 145
        4.4.2. Applications in Medical Diagnosis .............. 146
               4.4.2.1. Genes ................................. 146
               4.4.2.2. Detection of Proteins ................. 147
               4.4.2.3. Detection of Microbes ................. 147
               4.4.2.4. Multiplexed Assays .................... 148
        4.4.3. Imaging ........................................ 148
        4.4.4. Applications in Medical Therapy ................ 151
               4.4.4.1. Drug Delivery ......................... 151
               4.4.4.2. Gene Delivery ......................... 152
               4.4.4.3. Photodynamic Therapy .................. 153
   4.5. Summary and Future Perspectives ....................... 153
   References ................................................. 154

5. Mesoporous Cage-Like Silica Monoliths for Optical
   Sensing of Pollutant Ions .................................. 163
      Sherif A. El-Safty, Kohmei Halada and Hirohisa
      Yamada

   5.1. Introduction .......................................... 163
        5.1.1. Basic Concept of Optical Nanosensor Schemes .... 164
        5.1.2. Toxicity and Deleterious Effects of
               the Metal Ions ................................. 166
               5.1.2.1. Toxicity of Cadmium Ions .............. 166
               5.1.2.2. Toxicity of Antimony Ions ............. 167
               5.1.2.3. Toxicity of Mercury Ions .............. 167
               5.1.2.4. Toxicity of Lead Ions ................. 167
   5.2. General Sensing Techniques for Metal Ions ............. 168
   5.3. General Designs of Optical Nanosensors Based on
        Mesoporous Silica Carriers ............................ 169
        5.3.1. Optical Nanosensor of Cage HOM-TPPS Sink
               for Hg(II) Ions ................................ 170
        5.3.2. Optical Nanosensor of Cage HOM-PR Sink for
               Sb(III) Ions ................................... 172
        5.3.3. Optical Nanosensor of Cage HOM-TMPyP Sink
               for Cd(II) Ions ................................ 173
        5.3.4. Optical Nanosensor of Cage HOM-DZ Sink for
               Pb(II) Ions .................................... 175
   5.4. Optical Sensing Assays of Metal Ions Using
        Nanosensors ........................................... 178
   5.5. One-Step and Simple Ion-Sensing Procedures ............ 180
   5.6. The Calibration Graphs and Analytical Parameters
        of Nanosensors ........................................ 183
   5.7. The Advantages of Nanosensor Designs .................. 185
        5.7.1. Retention of Uniformity of Nanosensor
               Cage-Like Sinks ................................ 185
        5.7.2. Rapid Time-Response of Metal Ion-Sensing
               Systems ........................................ 187
        5.7.3. Stability of the Monolithic Nanosensors ........ 189
        5.7.4. Reversibility of the Metal Ion-Sensing
               Systems ........................................ 190
        5.7.5. Optically Selective Nanosensors for Trace-
               Level Toxic Ions ............................... 192
   5.8. Conclusions and Outlook ............................... 194
   References ................................................. 195

6. Nanoscale Bioactive Silicate Glasses in Biomedical
   Applications ............................................... 203
      Tobias J. Brunner, Wendelin J. Stark and Aldo R.
      Boccaccini

   6.1. Introduction .......................................... 203
   6.2. Fabrication of Nanoscale Bioactive Glass Particles
        and Fibers ............................................ 204
        6.2.1. Liquid-Phase Synthesis Method (Sol-Gel
               Technique) ..................................... 204
        6.2.2. Gas-Phase Synthesis Method (Flame Spray
               Synthesis) ..................................... 207
   6.3. Applications of Nanoscale Bioactive Glasses ........... 208
        6.3.1. Conventional Bioactive Glasses ................. 208
        6.3.2. Advantages of Nanometric Bioactive Glasses ..... 209
        6.3.3. Applications in Dentistry ...................... 210
               6.3.3.1. Remineralization ...................... 211
               6.3.3.2. Antimicrobial Effects ................. 212
        6.3.4. Applications in Tissue Engineering ............. 213
   6.4. Summary and Future Perspective ........................ 216
   References ................................................. 216

7. Toxicity of Spherical and Anisotropic Nanosilica ........... 221
      Yuhui Jin, Samuel Lohstreter and Julia Xiaojun Zhao

   7.1. Introduction .......................................... 221
   7.2. Synthesis of Amorphous Silica Nanoparticles ........... 223
   7.3. Invasion Pathways of Silica Nanomaterials into
        Living Systems ........................................ 225
        7.3.1. Exposure via the Respiratory Tract ............. 225
        7.3.2. Exposure via the Gastrointestinal Tract ........ 228
        7.3.3. Skin Contact ................................... 229
        7.3.4. A Brief Summary ................................ 230
   7.4. Mechanism of Nanomaterials-Induced Toxicity ........... 230
        7.4.1. Photoactive Nanomaterials-Induced Toxicity ..... 231
        7.4.2. Toxicity of Silica Nanoparticles ............... 231
               7.4.2.1. In Vitro Studies of Silica
                        Nanomaterials-Induced Toxicity ........ 231
               7.4.2.2. In Vivo Studies of Silica
                        Nanomaterials-Induced Toxicity ........ 232
               7.4.2.3. Mechanism of Silica Nanomaterials-
                        Induced Toxicity ...................... 233
   7.5. Effects of Silica Nanomaterial Properties on
        Toxicity .............................................. 233
        7.5.1. Effect of Silica Nanomaterial Size ............. 234
        7.5.2. Effect of Silica Nanomaterial Shape ............ 235
        7.5.3. Effects of Silica Nanomaterial Surface
               Properties ..................................... 236
   7.5. A. Effect of Dopants .................................. 236
        7.5.5. Effects of Dose and Interaction Time ........... 237
   7.6. Toxicity of Silica Nanomaterials: A Summary ........... 237
   7.7. Perspectives on Silica Nanomaterials .................. 238
   Acknowledgments ............................................ 238
   References ................................................. 239

8. Zirconia Nanomaterials: Synthesis and Biomedical
   Application ................................................ 245
      Georg Carnweitner

   8.1. Introduction .......................................... 245
   8.2. Synthesis of Zirconia Nanomaterials ................... 246
        8.2.1. Historical Overview ............................ 246
        8.2.2. Solvent-Based Synthesis of Zirconia
               Nanoparticles .................................. 248
               8.2.2.1. Hydrothermal Synthesis Strategies ..... 249
               8.2.2.2. Precipitation Techniques .............. 251
               8.2.2.3. The Pechini Method .................... 252
               8.2.2.4. Combustion Synthesis/Auto-Ignition .... 253
               8.2.2.5. Sol-Gel Methods ....................... 254
               8.2.2.6. Nonaqueous/Nonhydrolytic Sol-Gel
                        Technique ............................. 255
        8.2.3. Gas-Phase Synthesis of Zirconia
               Nanoparticles .................................. 256
        8.2.4. Top-Down Methods to Zirconia Nanoparticles ..... 258
        8.2.5. Synthesis of Zirconia Nanorods and Nanowires ... 259
   8.3. Biomedical Applications of Zirconia Nanomaterials ..... 263
        8.3.1. Nanostructured Zirconia-Based Bioceramics ...... 263
               8.3.1.1. Joint Replacements .................... 265
               8.3.1.2. Dental Implants ....................... 267
        8.3.2. Nanostructured Zirconia in Bioactive
               Apatite-Based Ceramics ......................... 267
        8.3.3. Nanostructured Zirconia Coatings on Non-
               Zirconia Bioceramics ........................... 269
        8.3.4. Doped Zirconia Nanostructures for
               Biolabeling .................................... 270
        8.3.5. Other Applications of Zirconia Nanomaterials
               in the Life Sciences ........................... 271
   8.4. Summary and Conclusions ............................... 273
   References ................................................. 276

9. Metal Oxide Nanomaterials for Water Treatment .............. 287
      Jinbo Fei and Junbai Li

   9.1. Introduction .......................................... 287
   9.2. Titanium Dioxide (TiO2) ............................... 288
        9.2.1. Ti02 Nanoparticles ............................. 288
               9.2.1.1. Degradation of Organic Pollutants ..... 288
               9.2.1.2. Catalysis and Adsorption of
                        Inorganic Anions ...................... 289
               9.2.1.3. Disinfection of Microorganisms ........ 289
        9.2.2. TiO2 Nanotubes and Nanorods .................... 290
        9.2.3. TiO2 Nanofilms ................................. 291
        9.2.4. ТЮ2 Nanocomposites ............................. 291
   9.3. Iron Oxides ........................................... 293
   9.4. Manganese Oxides ...................................... 295
   9.5. Cerium Oxide (CeO2) ................................... 300
   9.6. Magnesium Oxide (MgO) ................................. 302
   9.7. Alumina (Al2O3) ....................................... 303
   9.8. Summary ............................................... 304
   Acknowledgments ............................................ 305
   References ................................................. 305

Part Two Other Inorganic Nanomaterials ........................ 315

10.Approaches to Mesoscale Modeling of Nanoparticle-Cell
   Membrane Interactions ...................................... 317
      Valeriy V. Cinzburg, Sudhakar Balijepalli, Kurt
      A. Smith and Anna С Balazs

   10.1.Introduction .......................................... 317
   10.2.Field-Theoretical Modeling of Nanoparticle -
        Membrane Interactions ................................. 321
        10.2.1.Background and Theoretical Formalism ........... 321
        10.2.2.Simulation Results: Small Nanoparticle Near
               a Lipid Bilayer ................................ 325
   10.3.Dissipative Particle Dynamic Simulations of
        Nanoparticle-Cell Membrane Interactions ............... 332
        10.3.1.Background and Theoretical Formalism ........... 332
        10.3.2.Simulation Details ............................. 333
        10.3.3.DPD Simulation Results: Engulfing
               Nanoparticles with Membranes ................... 337
               10.3.3.1.Engulfing a Small Particle with
                        a Homogeneous Membrane ................ 337
               10.3.3.2.Engulfing a Small Particle with
                        a Membrane Raft ....................... 342
        10.3.4. Overall Trends Observed in DPD Simulations .... 345
   10.4.The Next Steps, and Future Opportunities .............. 346
   10.5.Summary and Outlook ................................... 348
   Acknowledgments ............................................ 349
   References ................................................. 350

11.Porous Silicon Particles for Imaging and Therapy of
   Cancer ..................................................... 357
      Rita E. Serda, Ciro Chiappini, Daniel Fine, Ennio
      Tasciotti and Mauro Ferrari

   11.1.Introduction .......................................... 357
   11.2.Porous Silicon ........................................ 359
   11.3.Microfabrication ...................................... 363
   11.4.Characterization ...................................... 365
        11.4.1.Gravimetry ..................................... 365
        11.4.2.Spectroscopic Ellipsometry ..................... 366
        11.4.3.X-Ray Diffraction .............................. 367
        11.4.4.Nitrogen Adsorption ............................ 368
        11.4.5.Sample Preparation for Electron Microscopy:
               Sectioning ..................................... 373
               11.4.5.1 Sample Preparation .................... 375
   11.5.Nanovectors for the Delivery of Therapeutics .......... 377
        11.5.1.Biocompatibility and Biodegradation ............ 377
        11.5.2.Drug Loading and Quantification of Drug Load ... 383
        11.5.3.Nanovectors for the Delivery of Therapeutics ... 386
        11.5.4.Towards a Multi-Stage Drug Delivery System ..... 387
   11.6.Cellular Uptake of pSi Particles ...................... 391
        11.6.1.Tumor Microenvironment ......................... 391
        11.6.2.Effect of Microparticle Shape on Margination ... 392
        11.6.3.Effect of Microparticle Size on Cellular
               Uptake ......................................... 393
        11.6.4.Effect of Surface Modification on pSi
               Particle Uptake ................................ 396
        11.6.5.Serum Opsonization Inhibits Uptake of
               Oxidized pSi Microparticles .................... 397
   11.7.Cancer Imaging ........................................ 397
   11.8.Conclusions ........................................... 398
   References ................................................. 398

12.Spherical and Anisotropic Hydroxyapatite Nanocrystals ...... 407
      Susmita Bose, Weichang Xue, Ashis Banerjee and
      AmiX Bandyopadhyay

   12.1.Introduction .......................................... 407
        12.1.1.Bone Structure ................................. 407
        12.1.2.Hydroxyapatite and its Crystal Structure ....... 409
        12.1.3.Synthetic HA Nanocrystals: Application to
               Bone Replacement and Drug/Protein Delivery ..... 410
               12.1.3.1.Bone Replacement ...................... 411
               12.1.3.2.Drug Delivery ......................... 411
   12.2.Synthesis of Hydroxyapatite Nanocrystals .............. 412
        12.2.1.Wet Chemical Precipitation ..................... 412
        12.2.2.Sol-Gel Process ................................ 415
        12.2.3.Biomimetic Synthesis ........................... 418
        12.2.4.Hydrothermal Method ............................ 420
        12.2.5.Mechanochemical Powder Synthesis ............... 421
        12.2.6.Solid-State Reactions .......................... 424
        12.2.7.Microwave-Assisted Synthesis ................... 424
        12.2.8.Emulsion Process ............................... 425
               12.2.8.1.Surfactants ........................... 425
               12.2.8.2.Reverse Micelles ...................... 426
               12.2.8.3.Effect of Ageing ...................... 429
               12.2.8.4.Effect of Metal Ion Concentration ..... 429
        12.2.9.Other Processes ................................ 430
   12.3.Characterization of Hydroxyapatite Nanocrystals ....... 431
        12.3.1.Composition and Phase Analysis ................. 431
        12.3.2.Nanoparticle Characterization for Size and
               Morphology ..................................... 433
        12.3.3.Biological Characterization .................... 434
               12.3.3.1.In Vitro Evaluation Methods:
                        Simulated Body Fluids and Cell
                        Culture ............................... 434
               12.3.3.2.In Vivo Animal Testing ................ 435
               12.3.3.3.Toxicology of HA Nanoparticles ........ 435
   12.4.Bulk Structures Using Hydroxyapatite Nanocrystals ..... 435
        12.4.1.Microwave Sintering of Nanopowders ............. 436
   12.5.Future Trends ......................................... 438
        12.5.1.High-Strength HA using Nano-HA and Dopants ..... 439
        12.5.2.HA Scaffolds in Tissue Engineering ............. 439
        12.5.3.Nanoscale HA Coatings for Load-Bearing
               Implants ....................................... 440
        12.5.4.HA in Drug/Protein Delivery .................... 440
        References ............................................ 441
13.Calcium Phosphate Nanoparticles in Biomineralization and
   Biomaterials ............................................... 449
      Ruikang Tang and Yurong Cai

   13.1.Introduction .......................................... 449
   13.2.Nano-Calcium Phosphates in Hard Tissues ............... 451
        13.2.1.Bone ........................................... 451
        13.2.2.Tooth .......................................... 452
        13.2.3.Other Biological Organisms ..................... 453
   13.3.Biological Formation of Calcium Phosphates ............ 454
   13.4.Characteristic Mechanical Properties .................. 455
   13.5.Stability of Nano-Calcium Phosphates .................. 457
        13.5.1.Demineralization of Biominerals ................ 458
        13.5.2.Dissolution of Pure HAP ........................ 460
        13.5.3.Nanosize Effects in Biomaterials ............... 461
   13.6.Synthesis of Nano-Calcium Phosphates .................. 462
        13.6.1.Synthesis of Nano-Calcium Phosphate
               Particles ...................................... 462
        13.6.2.Biomimetic Construction using HA
               Nanoparticles .................................. 463
        13.6.3.Nano-HA-Collagen Composites .................... 467
        13.6.4.Nano-HA Coating ................................ 468
   13.7.Nano-Calcium Phosphate in Biomedical Engineering ...... 469
        13.7.1.Bone Repair .................................... 469
        13.7.2.Bone-Related Cells ............................. 473
        13.7.3.Enamel Repair .................................. 476
        13.7.4.Other Applications ............................. 478
   13.8.Summary ............................................... 481

Acknowledgments ............................................... 482
References .................................................... 482
Index ......................................................... 493


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:14 2019. Размер: 31,035 bytes.
Посещение N 1745 c 01.09.2009