Preface ........................................................ XV
List of Contributors .......................................... XIX
Part One Metal Oxide Nanomaterials .............................. 1
1. The Biomimetic Synthesis of Metal Oxide Nanomaterials ........ 3
Leila F. Deravi, Joshua D. Swartz and David W. Wright
1.1. Introduction ............................................ 3
1.2. Metal Oxides in Nature .................................. 4
1.2.1. Components of Biomineralization .................. 5
1.2.2. Biomineralization Optimization ................... 6
1.3. Biomimetic Synthesis of Metal Oxide Nanomaterials ....... 7
1.4. Constrained Biomineralization ........................... 8
1.4.1. Bacterial Synthesis of Metal Oxide
Nanomaterials .................................... 8
1.4.2. Synthesis of Protein-Functionalized
Ferromagnetic Co304 Nanocrystals ................. 9
1.4.3. Room-Temperature Synthesis of Barium Titanate ... 10
1.4.4. Biomimetic Synthesis of Magnetite ............... 11
1.4.4.1. Biomimetic Synthesis of Iron Oxide ..... 11
1.4.5. Metal Oxide Synthesis within a Protein Cage-
Ferritin ........................................ 14
1.4.5.1. Mineralization of Non-Natural Metal
Oxides Using Ferritin .................. 14
1.4.5.2. Mixed Mineralization Using Ferritin .... 14
1.4.6. Viral Templates for Metal Oxide Synthesis ....... 15
1.4.7. Hydrolysis of Metal Oxides Using Peptide
Nanorings as Templates .......................... 16
1.4.7.1. Enzymatic Peptide Nanoassembly of
Crystalline Ga2O3 ...................... 17
1.4.7.2. Synthesis of Ferroelectric ВТ
Nanoparticles Using Peptide
Nanorings .............................. 18
1.4.8. Synthesis of ZnO from Templated Butterfly
Wings ........................................... 19
1.4.9. Ionic Liquid-Assisted Co3O4 Synthesis ........... 20
1.4.10.Conclusions ..................................... 21
1.5. Mediated Mineralization ................................ 21
1.5.1. The Three-Tier Architecture of Nacreous
Layers .......................................... 22
1.5.2. Echinoderms ..................................... 23
1.5.2.1. Biomimetic Synthesis of Metal Oxides
Using Echinoderms as Inspiration ......... 24
1.5.3. Diatoms ......................................... 28
1.5.3.1. Biological Synthesis of Silica
Nanoparticles .......................... 30
1.5.3.2. Biomimetic Synthesis of Silica
Nanoparticles .......................... 31
1.5.3.3. Other Biomimetic Templates ............. 45
1.5.3.4. Non-natural Metal Oxide Synthesis
Using Biomimetic Peptides .............. 47
1.5.4. Conclusions ..................................... 48
1.6. Future Perspectives: Processing Metal Oxide
Nanomaterials .......................................... 48
References .................................................. 50
2. Synthesis of Symmetric and Asymmetric Nanosilica for
Materials, Optical and Medical Applications ................. 55
Yongquan Qu, Jennifer Lien and Ting Quo
2.1. Introduction ........................................... 55
2.2. Synthesis of Nanosilica ................................ 59
2.2.1. Symmetric Nanosilica ............................ 59
2.2.1.1. Catalytic Methods ...................... 63
2.2.1.2. Noncatalytic Growth .................... 65
2.2.2. Asymmetric Silica Nanomaterials ................. 68
2.2.2.1. Catalytic Growth ....................... 68
2.2.2.2. Noncatalytic Growth .................... 69
2.3. Characterization ....................................... 70
2.4. Applications of Symmetric and Asymmetric Nanosilica .... 72
2.4.1. Symmetric Nanosilica ............................ 73
2.4.1.1. Silica Nanomaterials as Drug
Delivery Vehicles ...................... 73
2.4.1.2. Silica Nanomaterials as a Catalyst
Host and Sensors ....................... 76
2.4.1.3. Silica Nanomaterials as Optical
Materials .............................. 76
2.4.1.4. Nanosilica in Other Applications ....... 77
2.4.2. Asymmetric Nanosilica ........................... 78
2.5. Conclusions ............................................ 78
Acknowledgments ............................................. 78
References .................................................. 78
3. One-Dimensional Silica Structures and Their
Applications to the Biological Sciences ..................... 83
Daniel Choi, David Mcllroy, James Nagler,
Eric Aston, Patrick Hrdlicka, Kurt Custin,
Rod Hill, Deborah Stenkamp and Joshua Branen
3.1. Introduction ........................................... 83
3.2. Synthesis of Silica Nanowires and Nanosprings .......... 84
3.2.1. Catalyst Preparation and Application ............ 85
3.2.2. Methods for VLS Synthesis of Nanowires .......... 86
3.2.2.1. Flow Reaction Formation of Nanowires ... 86
3.2.3. Laser Ablation of Nanowires ..................... 87
3.2.4. Chemical Vapor Deposition and Plasma-
Enhanced Chemical Vapor Deposition of
Nanowires ....................................... 88
3.3. Functionalization of Silica 1-D Silica Nanomaterials ... 90
3.4. Toxicology Studies on 1-D Silica Nanomaterials ......... 94
3.4.1. Intracellular Targeted Delivery ................. 94
3.4.2. A Typical Cellular Targeting Strategy Using
1-D NS-Based Nanostructures ..................... 94
3.4.2.1. In Vitro Toxicity of 1-D
Nanostructures ......................... 97
3.4.2.2. In Vivo Toxicity of 1-D
Nanostructures ......................... 99
3.5. Biological Applications of 1-D Silica Nanomaterials ... 101
3.5.1. Biodetection ................................... 101
References ................................................. 103
4. Approaches to the Biofunctionalization of Spherical
Silica Nanomaterials ....................................... 109
Michihiro Nakamura
4.1. Introduction .......................................... 109
4.2. Silica Nanoparticles .................................. 112
4.2.1. Inorganic Silica Nanoparticles ................. 113
4.2.2. Organosilica Nanoparticles ..................... 114
4.2.2.1. Organically Modified Silane
Nanoparticles (ORMOSIL
Nanoparticles) ........................ 114
4.2.2.2. Functional Organosilica
Nanoparticles ......................... 115
4.2.2.3. Multisilicate Nanoparticles ........... 119
4.3. Biofunctionalization of Silica Nanoparticles .......... 122
4.3.1. Surface Biofunctionalization ................... 123
4.3.1.1. Surface Biofunctionalization of
Inorganic Silica Nanoparticles ........ 123
4.3.1.2. Surface Biofunctionalization of
Organosilica Nanoparticles ............ 126
4.3.2. Internal Biofunctionalization .................. 133
4.3.2.1. An Overview ........................... 133
4.3.2.2. Preparation of Fluorescent Silica
Nanoparticles ......................... 134
4.4. Applications .......................................... 144
4.4.1. Advantages of Biofunctionalized Silica
Nanoparticles .................................. 145
4.4.2. Applications in Medical Diagnosis .............. 146
4.4.2.1. Genes ................................. 146
4.4.2.2. Detection of Proteins ................. 147
4.4.2.3. Detection of Microbes ................. 147
4.4.2.4. Multiplexed Assays .................... 148
4.4.3. Imaging ........................................ 148
4.4.4. Applications in Medical Therapy ................ 151
4.4.4.1. Drug Delivery ......................... 151
4.4.4.2. Gene Delivery ......................... 152
4.4.4.3. Photodynamic Therapy .................. 153
4.5. Summary and Future Perspectives ....................... 153
References ................................................. 154
5. Mesoporous Cage-Like Silica Monoliths for Optical
Sensing of Pollutant Ions .................................. 163
Sherif A. El-Safty, Kohmei Halada and Hirohisa
Yamada
5.1. Introduction .......................................... 163
5.1.1. Basic Concept of Optical Nanosensor Schemes .... 164
5.1.2. Toxicity and Deleterious Effects of
the Metal Ions ................................. 166
5.1.2.1. Toxicity of Cadmium Ions .............. 166
5.1.2.2. Toxicity of Antimony Ions ............. 167
5.1.2.3. Toxicity of Mercury Ions .............. 167
5.1.2.4. Toxicity of Lead Ions ................. 167
5.2. General Sensing Techniques for Metal Ions ............. 168
5.3. General Designs of Optical Nanosensors Based on
Mesoporous Silica Carriers ............................ 169
5.3.1. Optical Nanosensor of Cage HOM-TPPS Sink
for Hg(II) Ions ................................ 170
5.3.2. Optical Nanosensor of Cage HOM-PR Sink for
Sb(III) Ions ................................... 172
5.3.3. Optical Nanosensor of Cage HOM-TMPyP Sink
for Cd(II) Ions ................................ 173
5.3.4. Optical Nanosensor of Cage HOM-DZ Sink for
Pb(II) Ions .................................... 175
5.4. Optical Sensing Assays of Metal Ions Using
Nanosensors ........................................... 178
5.5. One-Step and Simple Ion-Sensing Procedures ............ 180
5.6. The Calibration Graphs and Analytical Parameters
of Nanosensors ........................................ 183
5.7. The Advantages of Nanosensor Designs .................. 185
5.7.1. Retention of Uniformity of Nanosensor
Cage-Like Sinks ................................ 185
5.7.2. Rapid Time-Response of Metal Ion-Sensing
Systems ........................................ 187
5.7.3. Stability of the Monolithic Nanosensors ........ 189
5.7.4. Reversibility of the Metal Ion-Sensing
Systems ........................................ 190
5.7.5. Optically Selective Nanosensors for Trace-
Level Toxic Ions ............................... 192
5.8. Conclusions and Outlook ............................... 194
References ................................................. 195
6. Nanoscale Bioactive Silicate Glasses in Biomedical
Applications ............................................... 203
Tobias J. Brunner, Wendelin J. Stark and Aldo R.
Boccaccini
6.1. Introduction .......................................... 203
6.2. Fabrication of Nanoscale Bioactive Glass Particles
and Fibers ............................................ 204
6.2.1. Liquid-Phase Synthesis Method (Sol-Gel
Technique) ..................................... 204
6.2.2. Gas-Phase Synthesis Method (Flame Spray
Synthesis) ..................................... 207
6.3. Applications of Nanoscale Bioactive Glasses ........... 208
6.3.1. Conventional Bioactive Glasses ................. 208
6.3.2. Advantages of Nanometric Bioactive Glasses ..... 209
6.3.3. Applications in Dentistry ...................... 210
6.3.3.1. Remineralization ...................... 211
6.3.3.2. Antimicrobial Effects ................. 212
6.3.4. Applications in Tissue Engineering ............. 213
6.4. Summary and Future Perspective ........................ 216
References ................................................. 216
7. Toxicity of Spherical and Anisotropic Nanosilica ........... 221
Yuhui Jin, Samuel Lohstreter and Julia Xiaojun Zhao
7.1. Introduction .......................................... 221
7.2. Synthesis of Amorphous Silica Nanoparticles ........... 223
7.3. Invasion Pathways of Silica Nanomaterials into
Living Systems ........................................ 225
7.3.1. Exposure via the Respiratory Tract ............. 225
7.3.2. Exposure via the Gastrointestinal Tract ........ 228
7.3.3. Skin Contact ................................... 229
7.3.4. A Brief Summary ................................ 230
7.4. Mechanism of Nanomaterials-Induced Toxicity ........... 230
7.4.1. Photoactive Nanomaterials-Induced Toxicity ..... 231
7.4.2. Toxicity of Silica Nanoparticles ............... 231
7.4.2.1. In Vitro Studies of Silica
Nanomaterials-Induced Toxicity ........ 231
7.4.2.2. In Vivo Studies of Silica
Nanomaterials-Induced Toxicity ........ 232
7.4.2.3. Mechanism of Silica Nanomaterials-
Induced Toxicity ...................... 233
7.5. Effects of Silica Nanomaterial Properties on
Toxicity .............................................. 233
7.5.1. Effect of Silica Nanomaterial Size ............. 234
7.5.2. Effect of Silica Nanomaterial Shape ............ 235
7.5.3. Effects of Silica Nanomaterial Surface
Properties ..................................... 236
7.5. A. Effect of Dopants .................................. 236
7.5.5. Effects of Dose and Interaction Time ........... 237
7.6. Toxicity of Silica Nanomaterials: A Summary ........... 237
7.7. Perspectives on Silica Nanomaterials .................. 238
Acknowledgments ............................................ 238
References ................................................. 239
8. Zirconia Nanomaterials: Synthesis and Biomedical
Application ................................................ 245
Georg Carnweitner
8.1. Introduction .......................................... 245
8.2. Synthesis of Zirconia Nanomaterials ................... 246
8.2.1. Historical Overview ............................ 246
8.2.2. Solvent-Based Synthesis of Zirconia
Nanoparticles .................................. 248
8.2.2.1. Hydrothermal Synthesis Strategies ..... 249
8.2.2.2. Precipitation Techniques .............. 251
8.2.2.3. The Pechini Method .................... 252
8.2.2.4. Combustion Synthesis/Auto-Ignition .... 253
8.2.2.5. Sol-Gel Methods ....................... 254
8.2.2.6. Nonaqueous/Nonhydrolytic Sol-Gel
Technique ............................. 255
8.2.3. Gas-Phase Synthesis of Zirconia
Nanoparticles .................................. 256
8.2.4. Top-Down Methods to Zirconia Nanoparticles ..... 258
8.2.5. Synthesis of Zirconia Nanorods and Nanowires ... 259
8.3. Biomedical Applications of Zirconia Nanomaterials ..... 263
8.3.1. Nanostructured Zirconia-Based Bioceramics ...... 263
8.3.1.1. Joint Replacements .................... 265
8.3.1.2. Dental Implants ....................... 267
8.3.2. Nanostructured Zirconia in Bioactive
Apatite-Based Ceramics ......................... 267
8.3.3. Nanostructured Zirconia Coatings on Non-
Zirconia Bioceramics ........................... 269
8.3.4. Doped Zirconia Nanostructures for
Biolabeling .................................... 270
8.3.5. Other Applications of Zirconia Nanomaterials
in the Life Sciences ........................... 271
8.4. Summary and Conclusions ............................... 273
References ................................................. 276
9. Metal Oxide Nanomaterials for Water Treatment .............. 287
Jinbo Fei and Junbai Li
9.1. Introduction .......................................... 287
9.2. Titanium Dioxide (TiO2) ............................... 288
9.2.1. Ti02 Nanoparticles ............................. 288
9.2.1.1. Degradation of Organic Pollutants ..... 288
9.2.1.2. Catalysis and Adsorption of
Inorganic Anions ...................... 289
9.2.1.3. Disinfection of Microorganisms ........ 289
9.2.2. TiO2 Nanotubes and Nanorods .................... 290
9.2.3. TiO2 Nanofilms ................................. 291
9.2.4. ТЮ2 Nanocomposites ............................. 291
9.3. Iron Oxides ........................................... 293
9.4. Manganese Oxides ...................................... 295
9.5. Cerium Oxide (CeO2) ................................... 300
9.6. Magnesium Oxide (MgO) ................................. 302
9.7. Alumina (Al2O3) ....................................... 303
9.8. Summary ............................................... 304
Acknowledgments ............................................ 305
References ................................................. 305
Part Two Other Inorganic Nanomaterials ........................ 315
10.Approaches to Mesoscale Modeling of Nanoparticle-Cell
Membrane Interactions ...................................... 317
Valeriy V. Cinzburg, Sudhakar Balijepalli, Kurt
A. Smith and Anna С Balazs
10.1.Introduction .......................................... 317
10.2.Field-Theoretical Modeling of Nanoparticle -
Membrane Interactions ................................. 321
10.2.1.Background and Theoretical Formalism ........... 321
10.2.2.Simulation Results: Small Nanoparticle Near
a Lipid Bilayer ................................ 325
10.3.Dissipative Particle Dynamic Simulations of
Nanoparticle-Cell Membrane Interactions ............... 332
10.3.1.Background and Theoretical Formalism ........... 332
10.3.2.Simulation Details ............................. 333
10.3.3.DPD Simulation Results: Engulfing
Nanoparticles with Membranes ................... 337
10.3.3.1.Engulfing a Small Particle with
a Homogeneous Membrane ................ 337
10.3.3.2.Engulfing a Small Particle with
a Membrane Raft ....................... 342
10.3.4. Overall Trends Observed in DPD Simulations .... 345
10.4.The Next Steps, and Future Opportunities .............. 346
10.5.Summary and Outlook ................................... 348
Acknowledgments ............................................ 349
References ................................................. 350
11.Porous Silicon Particles for Imaging and Therapy of
Cancer ..................................................... 357
Rita E. Serda, Ciro Chiappini, Daniel Fine, Ennio
Tasciotti and Mauro Ferrari
11.1.Introduction .......................................... 357
11.2.Porous Silicon ........................................ 359
11.3.Microfabrication ...................................... 363
11.4.Characterization ...................................... 365
11.4.1.Gravimetry ..................................... 365
11.4.2.Spectroscopic Ellipsometry ..................... 366
11.4.3.X-Ray Diffraction .............................. 367
11.4.4.Nitrogen Adsorption ............................ 368
11.4.5.Sample Preparation for Electron Microscopy:
Sectioning ..................................... 373
11.4.5.1 Sample Preparation .................... 375
11.5.Nanovectors for the Delivery of Therapeutics .......... 377
11.5.1.Biocompatibility and Biodegradation ............ 377
11.5.2.Drug Loading and Quantification of Drug Load ... 383
11.5.3.Nanovectors for the Delivery of Therapeutics ... 386
11.5.4.Towards a Multi-Stage Drug Delivery System ..... 387
11.6.Cellular Uptake of pSi Particles ...................... 391
11.6.1.Tumor Microenvironment ......................... 391
11.6.2.Effect of Microparticle Shape on Margination ... 392
11.6.3.Effect of Microparticle Size on Cellular
Uptake ......................................... 393
11.6.4.Effect of Surface Modification on pSi
Particle Uptake ................................ 396
11.6.5.Serum Opsonization Inhibits Uptake of
Oxidized pSi Microparticles .................... 397
11.7.Cancer Imaging ........................................ 397
11.8.Conclusions ........................................... 398
References ................................................. 398
12.Spherical and Anisotropic Hydroxyapatite Nanocrystals ...... 407
Susmita Bose, Weichang Xue, Ashis Banerjee and
AmiX Bandyopadhyay
12.1.Introduction .......................................... 407
12.1.1.Bone Structure ................................. 407
12.1.2.Hydroxyapatite and its Crystal Structure ....... 409
12.1.3.Synthetic HA Nanocrystals: Application to
Bone Replacement and Drug/Protein Delivery ..... 410
12.1.3.1.Bone Replacement ...................... 411
12.1.3.2.Drug Delivery ......................... 411
12.2.Synthesis of Hydroxyapatite Nanocrystals .............. 412
12.2.1.Wet Chemical Precipitation ..................... 412
12.2.2.Sol-Gel Process ................................ 415
12.2.3.Biomimetic Synthesis ........................... 418
12.2.4.Hydrothermal Method ............................ 420
12.2.5.Mechanochemical Powder Synthesis ............... 421
12.2.6.Solid-State Reactions .......................... 424
12.2.7.Microwave-Assisted Synthesis ................... 424
12.2.8.Emulsion Process ............................... 425
12.2.8.1.Surfactants ........................... 425
12.2.8.2.Reverse Micelles ...................... 426
12.2.8.3.Effect of Ageing ...................... 429
12.2.8.4.Effect of Metal Ion Concentration ..... 429
12.2.9.Other Processes ................................ 430
12.3.Characterization of Hydroxyapatite Nanocrystals ....... 431
12.3.1.Composition and Phase Analysis ................. 431
12.3.2.Nanoparticle Characterization for Size and
Morphology ..................................... 433
12.3.3.Biological Characterization .................... 434
12.3.3.1.In Vitro Evaluation Methods:
Simulated Body Fluids and Cell
Culture ............................... 434
12.3.3.2.In Vivo Animal Testing ................ 435
12.3.3.3.Toxicology of HA Nanoparticles ........ 435
12.4.Bulk Structures Using Hydroxyapatite Nanocrystals ..... 435
12.4.1.Microwave Sintering of Nanopowders ............. 436
12.5.Future Trends ......................................... 438
12.5.1.High-Strength HA using Nano-HA and Dopants ..... 439
12.5.2.HA Scaffolds in Tissue Engineering ............. 439
12.5.3.Nanoscale HA Coatings for Load-Bearing
Implants ....................................... 440
12.5.4.HA in Drug/Protein Delivery .................... 440
References ............................................ 441
13.Calcium Phosphate Nanoparticles in Biomineralization and
Biomaterials ............................................... 449
Ruikang Tang and Yurong Cai
13.1.Introduction .......................................... 449
13.2.Nano-Calcium Phosphates in Hard Tissues ............... 451
13.2.1.Bone ........................................... 451
13.2.2.Tooth .......................................... 452
13.2.3.Other Biological Organisms ..................... 453
13.3.Biological Formation of Calcium Phosphates ............ 454
13.4.Characteristic Mechanical Properties .................. 455
13.5.Stability of Nano-Calcium Phosphates .................. 457
13.5.1.Demineralization of Biominerals ................ 458
13.5.2.Dissolution of Pure HAP ........................ 460
13.5.3.Nanosize Effects in Biomaterials ............... 461
13.6.Synthesis of Nano-Calcium Phosphates .................. 462
13.6.1.Synthesis of Nano-Calcium Phosphate
Particles ...................................... 462
13.6.2.Biomimetic Construction using HA
Nanoparticles .................................. 463
13.6.3.Nano-HA-Collagen Composites .................... 467
13.6.4.Nano-HA Coating ................................ 468
13.7.Nano-Calcium Phosphate in Biomedical Engineering ...... 469
13.7.1.Bone Repair .................................... 469
13.7.2.Bone-Related Cells ............................. 473
13.7.3.Enamel Repair .................................. 476
13.7.4.Other Applications ............................. 478
13.8.Summary ............................................... 481
Acknowledgments ............................................... 482
References .................................................... 482
Index ......................................................... 493
|