Momoh J.A. Electric power system applications of optimization (Boca Raton, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMomoh J.A. Electric power system applications of optimization. - 2nd ed. - Boca Raton: CRC Press, 2009. - xxiii, 608 p.: ill. - Incl. bibl. ref. - Ind.: p.595-608. - ISBN 978-1-4200-6586-2
 

Оглавление / Contents
 
Preface ...................................................... xvii
Author ...................................................... xxiii

Chapter 1 Introduction .......................................... 1

1.1. Structure of a Generic Electric Power System ............... 1
1.2. Power System Models ........................................ 3
1.3. Power System Control ....................................... 5
1.4. Power System Security Assessment ........................... 8
1.5. Power System Optimization as a Function of Time ........... 11
1.6. Review of Optimization Techniques Applicable to Power
     Systems ................................................... 13
     References ................................................ 16

Chapter 2 Electric Power System Models ......................... 17

2.1. Introduction .............................................. 17
2.2. Complex Power Concepts .................................... 18
2.3. Three-Phase Systems ....................................... 20
     2.3.1. Y-Connected Systems ................................ 21
     2.3.2. Delta-Connected Systems ............................ 23
     2.3.3. Power Relationships ................................ 25
2.4. Per Unit Representation ................................... 27
2.5. Synchronous Machine Modeling .............................. 28
     2.5.1. Classical Representation of the Synchronous
            Machine ............................................ 29
2.6. Reactive Capability Limits ................................ 30
2.7. Prime Movers and Governing Systems ........................ 31
     2.7.1. Hydraulic Turbines and Governing Models ............ 31
     2.7.2. Steam Turbines and Governing System Models ......... 33
2.8. Automatic Gain Control .................................... 34
     2.8.1. Power Control in a Multigenerator Environment ...... 34
     2.8.2. AGC System Models .................................. 38
            2.8.2.1. Case A: Two Generating Units .............. 38
2.9. Transmission Subsystems ................................... 40
2.10.Y-Bus Incorporating the Transformer Effect ................ 42
     2.10.1.Fixed Tap-Setting Transformer ...................... 42
     2.10.2.TCUL Transformer ................................... 45
     2.10.3.Phase-Shifting Transformer ......................... 45
2.11.Load Models ............................................... 50
     2.11.1.Static Load Models ................................. 50
2.12.Available Transfer Capability ............................. 52
     2.12.1.АТС Definition and Formulation ..................... 52
     2.12.2.АТС Calculation .................................... 53
2.13.Illustrative Examples ..................................... 54
2.14.Conclusions ............................................... 58
2.15.Problem Set ............................................... 58
     References ................................................ 61

Chapter 3 Power-Flow Computations .............................. 63

3.1. Introduction .............................................. 63
3.2. Types of Buses for PF Studies ............................. 64
3.3. General Form of the PFEs .................................. 66
     3.3.1. PF Control by Transformer Regulation ............... 67
3.4. Practical Modeling Considerations ......................... 69
     3.4.1. Generation Subsystem ............................... 69
            3.4.1.1. Rectangular Formulation ................... 72
            3.4.1.2. Polar Formulation ......................... 72
3.5. Iterative Techniques for PF Solution ...................... 72
     3.5.1. G-S Iterative Technique ............................ 73
            3.5.1.1. G-S Algorithm ............................. 73
            3.5.1.2. G-S Method Applied to the PFEs ............ 74
            3.5.1.3. G-S Iterative Technique ................... 75
            3.5.1.4. Line Flow and Losses ...................... 77
     3.5.2. N-R Method ......................................... 78
            3.5.2.1. N-R Algorithm in the Scalar Case .......... 78
            3.5.2.2. N-R Algorithm in the n-Dimensional
                     Case ...................................... 83
            3.5.2.3. N-R Algorithm Applied to the PFEs ......... 84
     3.5.3. Fast-Decoupled PF Method ........................... 97
     3.5.4. Linearized (DC) PF Method ......................... 100
3.6. Practical Applications of PF Studies ..................... 102
     3.6.1. Case Study Discussion ............................. 103
3.7. Illustrative Examples .................................... 103
3.8. Conclusion ............................................... 108
3.9. Problem Set .............................................. 109
     References ............................................... 112

Chapter 4 Constrained Optimization and Applications ........... 113

4.1. Introduction ............................................. 113
4.2. Theorems on the Optimization of Constrained Functions .... 114
     4.2.1. Continuity Assumption ............................. 115
     4.2.2. Theorems .......................................... 115
4.3. Procedure for Optimizing Constrained Problems
     (Functions) .............................................. 116
4.4. Karush-Kuhn-Tucker Condition ............................. 117
4.5. Illustrative Problems .................................... 118
     4.5.1. Nonpower Systems Application Examples ............. 119
4.6. Power Systems Application Examples ....................... 120
     4.6.1. Optimal Operation of an All-Thermal System:
            Equal Incremental Cost-Loading .................... 120
     4.6.2. Optimal Operation of an All-Thermal System,
            Including Losses .................................. 123
4.7. Illustrative Examples .................................... 127
4.8. Conclusion ............................................... 133
4.9. Problem Set .............................................. 134
     References ............................................... 136

Chapter 5 Linear Programming and Applications ................. 137

5.1. Introduction ............................................. 137
5.2. Mathematical Model and Nomenclature in LP ................ 138
     5.2.1. Implicit Assumptions in LP ........................ 139
5.3. LP Solution Techniques ................................... 140
     5.3.1. Graphical Method .................................. 140
     5.3.2. Matrix Approach to LP ............................. 142
     5.3.3. Simplex Method .................................... 144
     5.3.4. Lemma of Matrix Inversion ......................... 146
     5.3.5. Revised Simplex Method ............................ 150
5.4. Duality in LP ............................................ 153
5.5. Khun-Tucker Conditions in LP ............................. 156
     5.5.1. Case 1: LP and KKT Conditions for Problems
            with Equality Constraints ......................... 156
     5.5.2. Case 2: KKT Applied to the Dual LP Problem ........ 158
     5.5.3. Case 3: KKT Applied to LP Problems with
            Equality Constraints .............................. 160
5.6. Mixed-Integer Programming ................................ 162
     5.6.1. Branch-and-Bound Technique for Binary
            Integer Programming Problems ...................... 164
5.7. Sensitivity Methods for Postoptimization in LP ........... 168
     5.7.1. Case 1: Perturbation in the Parameters b1 ......... 169
     5.7.2. Case 2: Perturbation in the Cost Coefficients
            cj ................................................ 169
     5.7.3. Case 3: Perturbation in the Coefficient aij ....... 170
     5.7.4. Case 4: Injection of New Constraints .............. 170
     5.7.5. Case 5: Injection of New Variables ................ 170
     5.7.6. Sensitivity Analysis Solution Technique for
            Changes in Parameters bi .......................... 170
            5.7.6.1. Solution Methodology ..................... 172
            5.7.6.2. Implementation Algorithm ................. 174
            5.7.6.3. Duality in Postoptimal Analysis .......... 177
5.8. Power Systems Applications ............................... 179
5.9. Illustrative Examples .................................... 180
5.10.Conclusion ............................................... 188
5.11.Problem Set .............................................. 189
     References ............................................... 196

Chapter 6 Interior Point Methods .............................. 197

6.1. Introduction ............................................. 197
6.2. Karmarkar's Algorithm .................................... 199
6.3. Projective-Scaling Method ................................ 200
6.4. Dual Affine Algorithm .................................... 202
6.5. Primal Affine Algorithm .................................. 203
6.6. Barrier Algorithm ........................................ 204
6.7. Extended IP Method for LP Problems ....................... 205
6.8. FI Sequence .............................................. 206
     6.8.1. Optimality Condition .............................. 209
6.9. Extended Quadratic Programming Using IP Method ........... 211
6.10.Illustrative Examples .................................... 216
6.11.Conclusions .............................................. 227
6.12.Problem Set .............................................. 228
     References ............................................... 230

Chapter 7 Nonlinear Programming ............................... 233

7.1. Introduction ............................................. 233
7.2. Classification of NLP Problems ........................... 233
     7.2.1. NLP Problems with Nonlinear Objective Function
            and Linear Constraints ............................ 233
     7.2.2. Quadratic Programming ............................. 234
     7.2.3. Convex Programming ................................ 234
     7.2.4. Separable Programming ............................. 234
7.3. Sensitivity Method for Solving NLP Variables ............. 235
     7.3.1. Procedure for Solving the NLP Problem ............. 236
7.4. Algorithm for Quadratic Optimization ..................... 240
7.5. Illustrative Example (Barrier Method for Solving NLP) .... 241
     7.5.1. Algorithm for Recursive Process ................... 242
            7.5.1.1. Analytical Forms ......................... 245
            7.5.1.2. Penalty Vectors .......................... 246
     7.5.2. Computer Implementation ........................... 247
7.6. Illustrative Examples .................................... 248
7.7. Conclusion ............................................... 257
7.8. Problem Set .............................................. 257
     References ............................................... 262

Chapter 8 Dynamic Programming ................................. 263

8.1. Introduction ............................................. 263
8.2. Formulation of a Multistage Decision Process ............. 264
     8.2.1. Representation of a Multistage Decision Process ... 264
     8.2.2. Types of Multistage Decision Problems ............. 266
8.3. Characteristics of DP .................................... 266
8.4. Concept of Suboptimization and the Principle of
     Optimality ............................................... 267
8.5. Formulation of DP ........................................ 269
8.6. Backward and Forward Recursion ........................... 274
     8.6.1. Minimum Path Problem .............................. 275
     8.6.2. Single Additive Constraint and Additively
            Separable Return Problem .......................... 279
     8.6.3. Single Multiplicative Constraint, Additively
            Separable Return Problem .......................... 280
     8.6.4. Single Additive Constraint, Multiplicatively
            Separable Turn Problem ............................ 283
8.7. Computational Procedure in DP ............................ 283
8.8. Computational Economy in DP .............................. 285
8.9. Systems with More than One Constraint .................... 285
8.10.Conversion of a Final Value Problem into an Initial
     Value Problem ............................................ 288
8.11.Illustrative Examples .................................... 289
8.12.Conclusions .............................................. 296
8.13.Problem Set .............................................. 297
     References ............................................... 301

Chapter 9 Lagrangian Relaxation ............................... 303

9.1. Introduction ............................................. 303
9.2. Concepts ................................................. 304
9.3. Subgradient Method for Setting the Dual Variables ........ 305
9.4. Setting tk ............................................... 313
     9.4.1. Case 1: Subgradient Method with tk = l for
            All к ............................................. 313
     9.4.2. Case 2: Subgradient Method with tk = 1, 0.5,
            0.25 .............................................. 314
     9.4.3. Case 3: Subgradient Method with tk = 1, 1/3,
            1/9 ............................................... 315
9.5. Comparison with LP-Based Bounds .......................... 317
9.6. Improved Relaxation ...................................... 318
9.7. Summary of Concepts ...................................... 319
9.8. Past Applications ........................................ 321
9.9. Summary .................................................. 322
     9.9.1. Overview .......................................... 322
     9.9.2. Algorithm of Solution Using Lagrangian
            Relaxation Approach ............................... 323
     9.9.3. Power System Application: Scheduling in Power
            Generation Systems ................................ 324
            9.9.3.1. Model .................................... 324
            9.9.3.2. Relaxation and Decomposition of the
                     Model .................................... 326
            9.9.3.3. Solution Technique ....................... 328
9.10.Illustrative Examples .................................... 329
9.11.Conclusions .............................................. 330
9.12.Problem Set .............................................. 332
     References ............................................... 333

Chapter 10 Decomposition Method ............................... 335

10.1.Introduction ............................................. 335
10.2.Formulation of the Decomposition Problem ................. 335
10.3.Algorithm of the Decomposition Technique ................. 338
10.4.Illustrative Example of the Decomposition Technique ...... 339
10.5.Conclusions .............................................. 345
10.6.Problem Set .............................................. 346
     References ............................................... 348

Chapter 11.State Estimation ................................... 351

11.1.Historical Perspective of State Estimation ............... 351
     11.1.1.Conventional State Estimation ..................... 353
     11.1.2.Generalized State Estimation ...................... 353
11.2.Simple Mathematical Background ........................... 355
     11.2.1.Definition of Static State Estimation ............. 355
11.3.State Estimation Techniques .............................. 357
     11.3.1.Method ............................................ 357
            11.3.1.1.Least Squares Estimation (LSE) ........... 358
            11.3.1.2.Weighted Least Square Estimation ......... 360
11.4.Applications to Power Network ............................ 362
     11.4.1.State Estimation in Power Systems ................. 362
            11.4.1.1.WLSs Estimator ........................... 364
     11.4.2.Statistical Properties of State Estimator
            Outputs ........................................... 366
            11.4.2.1.Decoupled WLS and DC Models .............. 367
            11.4.2.2.Including Equality Constraints ........... 368
            11.4.2.3.Necessary Solution Conditions ............ 371
     11.4.3.Model Parameter Identification—Sources
            of Inaccuracy ..................................... 371
     11.4.4.State Estimation in Deregulated Environment ....... 371
            11.4.4.1.Network Real-Time Modeling ............... 372
            11.4.4.2.Impact of the Changing Marketplace ....... 372
11.5.Illustrative Examples .................................... 373
11.6.Conclusion ............................................... 375
11.7.Problem Set .............................................. 376
     References ............................................... 380

Chapter 12 Optimal Power Flow ................................. 383

12.1.Introduction ............................................. 383
12.2.OPF—Fuel Cost Minimization ............................... 386
     12.2.1.Modeling Issues ................................... 386
     12.2.2.Mathematical Description of the Objective
            Functions and Constraints for Cost Minimization ... 387
12.3.OPF—Active Power Loss Minimization ....................... 389
     12.3.1.Modeling Issues for Loss Minimization ............. 390
     12.3.2.Mathematical Description of the Objective
            Functions and Constraints for Loss Minimization ... 391
12.4.OPF—VAr Planning ......................................... 393
     12.4.1.Modeling Issues for VAr Planning Type I Problem ... 395
     12.4.2.Mathematical Description of the Objective and
            Constraints for Type I Problem for VAr Planning ... 396
     12.4.3.Type II Problem for VAr Planning .................. 397
            12.4.3.1.Control Variables ........................ 397
            12.4.3.2.Constraints .............................. 398
            12.4.3.3.Assumptions .............................. 398
     12.4.4.Mathematical Description of the Objective
            and Constraints for Type II Problem for VAr
            Planning .......................................... 398
            12.4.4.1.Mathematical Notation .................... 399
            12.4.4.2.Mathematical Description of VAr
                     Planning ................................. 399
12.5.OPF—Adding Environmental Constraints ..................... 402
     12.5.1.Modeling Issues for Environmental Constraint ...... 402
12.6.Commonly Used Optimization Technique in Linear
     Programming (LP) ......................................... 403
     12.6.1.LP ................................................ 404
            12.6.1.1.Definition of LP Problem Structure ....... 406
            12.6.1.2.LP Iteration ............................. 406
            12.6.1.3.Selection of Variable to Enter Basis ..... 407
     12.6.2.LP Applications in OPF ............................ 408
     12.6.3.Interior Point .................................... 410
            12.6.3.1.OPF Formulation (Method II) .............. 411
12.7.Commonly Used Optimization Techniques in Nonlinear
     Programming .............................................. 415
     12.7.1.NLP ............................................... 415
            12.7.1.1.Finding the Descent Direction ............ 416
            12.7.1.2.Finding the Step Length .................. 416
            12.7.1.3.Treatment of the Constraints ............. 417
     12.7.2.Sequential Quadratic Programming (SQP) ............ 418
     12.7.3.Augmented Lagrangian Methods ...................... 420
     12.7.4.Generalized Reduced Gradients ..................... 420
            12.7.4.1.OPF Formulation Using QP Reduced
                     Gradient Method .......................... 422
     12.7.5.Projected Augmented Lagrangian .................... 425
     12.7.6.Discussion on Nonlinear OPF Algorithms ............ 426
            12.7.6.1.Decomposition Strategies ................. 427
            12.7.6.2.Adding Security Constraints .............. 427
12.8.Illustrative Examples .................................... 428
12.9.Conclusions .............................................. 434
12.10.Problem Set ............................................. 435
     References ............................................... 437

Chapter 13 Pricing ............................................ 441

13.1.Introduction ............................................. 441
13.2.Marginal Pricing ......................................... 442
13.3.Marginal Costing ......................................... 443
13.4.Marginal Revenue ......................................... 444
13.5.Pricing Policies for Regulated Systems and Markets ....... 445
13.6.Pricing Methods .......................................... 446
     13.6.1.Megawatt-Mile (MWM) Method ........................ 447
     13.6.2.Modulus Method (MM) or Usage Method ............... 447
     13.6.3.Zero Counterflow Method (ZCM) ..................... 448
     13.6.4.Dominant Flow Method (DFM) ........................ 448
     13.6.5.Alternative Pricing Methods ....................... 449
13.7.Economic Basis of Shadow Prices in Linear Programming
     (LP) ..................................................... 449
     13.7.1.Special Case of LP Problems with Two-Sided
            Bounded Variables ................................. 451
     13.7.2.Further Interpretation of Dual Shadow Prices
            Variables ......................................... 451
13.8.LMP ...................................................... 452
     13.8.1.Components of LMP ................................. 452
     13.8.2.LMP in Energy Markets ............................. 455
            13.8.2.1.Formulation for NLP Approximations ....... 455
            13.8.2.2.Formulation for LP-Based OPF ............. 456
     13.8.3.Computational Steps for LMP Using DC OPF .......... 457
     13.8.4.Transmission Congestion Charges (TCCs) ............ 461
13.9.Alternative OPF Formulation for Pricing Using Duality
     in LP .................................................... 462
     13.9.1.Linearization of the OPF .......................... 463
     13.9.2.LP Dual Construct ................................. 465
     References ............................................... 467

Chapter 14 Unit Commitment .................................... 469

14.1.Introduction ............................................. 469
14.2.Formulation of Unit Commitment ........................... 471
     14.2.1.Reserve Constraints ............................... 471
     14.2.2.Modeling in Unit Commitment ....................... 472
     14.2.3.Lagrangian Function for Unit Commitment ........... 473
14.3.Optimization Methods ..................................... 474
     14.3.1.Priority List Unit Commitment Schemes ............. 474
     14.3.2.Priority Criteria ................................. 475
            14.3.2.1.Type I: Fuel Cost-Based Lists ............ 475
            14.3.2.2.Type II: Incremental Fuel Cost-Based
                     List ..................................... 476
            14.3.2.3.Type III: Incremental Fuel Cost with
                     Start-Up Cost-Based List ................. 476
            14.3.2.4.Type IV: Dynamic Priority Lists .......... 477
     14.3.3.Simple Merit-Order Scheme ......................... 477
14.4.Illustrative Example ..................................... 478
     14.4.1.Lagrangian Relaxation Approach to Unit
            Commitment ........................................ 478
     14.4.2.Single Unit Relaxed Problem ....................... 480
     14.4.3.Lagrangian Relaxation Procedure ................... 483
     14.4.4.Searching for a Feasible Solution ................. 486
14.5.Updating λn(t) in the Unit Commitment Problem ............ 489
     14.5.1.Case A: Updating λn(t) ............................ 489
     14.5.2.Case B: Updating λn(t) ............................ 491
14.6.Unit Commitment of Thermal Units Using Dynamic
     Programming .............................................. 493
     14.6.1.Dynamic Programming Approaches to Unit
            Commitment Problem ................................ 494
            14.6.1.1.Backward Dynamic Programming Approach .... 494
            14.6.1.2.Forward Dynamic Programming Approach ..... 494
     14.6.2.Case Study ........................................ 496
14.7.Illustrative Problems .................................... 501
14.8.Conclusions .............................................. 503
14.9.Problems ................................................. 504
     References ............................................... 507

Chapter 15 Genetic Algorithms ................................. 509

15.1.Introduction ............................................. 509
     15.1.1.General Structure of GAs .......................... 509
15.2.Definition and Concepts Used in Genetic Computation ...... 510
     15.2.1.Evolutionary Algorithms ........................... 510
     15.2.2.Genetic Programming ............................... 511
15.3.GA Approach .............................................. 512
     15.3.1.GA Operators ...................................... 512
     15.3.2.Major Advantages .................................. 513
     15.3.3.Advantages of GAs over Traditional Methods ........ 514
15.4.Theory of GAs ............................................ 514
     15.4.1.Continuous and Discrete Variables ................. 514
     15.4.2.Constraints ....................................... 514
     15.4.3.Multiobjective Decision Problems .................. 515
     15.4.4.Other GA Variants ................................. 515
     15.4.5.Coding ............................................ 516
     15.4.6.Fitness ........................................... 516
     15.4.7.Selection ......................................... 516
     15.4.8.Crossover ......................................... 517
     15.4.9.Parameters ........................................ 517
15.5.Schemata Theorem ......................................... 517
15.6.General Algorithm of GAs ................................. 520
15.7.Application of GAs ....................................... 521
     15.7.1.Control System Engineering ........................ 521
     15.7.2.Timetabling ....................................... 521
     15.7.3.Job-Shop Scheduling ............................... 521
     15.7.4.Management Sciences ............................... 522
     15.7.5.Game Playing ...................................... 522
15.8.Application to Power Systems ............................. 522
     15.8.1.GAs in the Unit Commitment Problem ................ 523
            15.8.1.1.UCP Statement ............................ 524
            15.8.1.2.GA Implementation in the GTS Algorithm ... 525
            15.8.1.3.Proposed Algorithm ....................... 527
     15.8.2.Load Shedding: A Model with GA .................... 531
            15.8.2.1.Coding ................................... 533
            15.8.2.2.Fitness .................................. 533
            15.8.2.3.Initial Population ....................... 533
            15.8.2.4.Genetic Operators ........................ 534
15.9.Illustrative Examples .................................... 534
15.10.Conclusions ............................................. 535
15.11.Problem Set ............................................. 536
     References ............................................... 537

Chapter 16 Functional Optimization, Optimal Control,
           and Adaptive Dynamic Programming ................... 539

16.1.System Performance Evaluation and Optimization
     of Functionals ........................................... 539
     16.1.1.Extremization of Functionals ...................... 539
     16.1.2.Performance Measure ............................... 540
     16.1.3.Theorems of Optimization of Constrained
            Functionals ....................................... 541
     16.1.4.Summary of Procedure for Optimizing Constrained
            Functionals ....................................... 544
16.2.Solving the Optimal Control Problem ...................... 545
     16.2.1.Continuous Optimum Principle ...................... 548
     16.2.2.Formulation of the Problem ........................ 549
     16.2.3.Theorems for the Pontryagin Maximum Principle
            (PMP) ............................................. 551
     16.2.4.Sufficiency Test and Some Special Cases
            for the Optimum Principle ......................... 552
     16.2.5.Use of the Optimum Principle for Special
            Control Problems .................................. 554
     16.2.6.Regulator Problem and Riccati Equation ............ 556
16.3.Selected Methods of Determining the Control Functions
     for Convergence of Optimum Principle ..................... 558
     16.3.1.Dynamic Programming Method ........................ 559
     16.3.2.Principle of Optimality Is Used to Find u&42;(t)
            (Richard Bellman's Method) ........................ 559
     16.3.3.Relationship between Dynamic Programming
            and the Minimum Principle ......................... 562
     16.3.4.Section Summary ................................... 565
16.4.Adaptive Critics Design (ACD) and ADP .................... 565
     16.4.1.Background to Complex Intelligent Networks ........ 565
     16.4.2.From DP to Adaptive or "Approximate" Dynamic
            Programming (ADP) ................................. 567
     16.4.3.Critic Network Variants ........................... 569
16.5.Architecture of ACDs ..................................... 573
     16.5.1.Critic Networks ................................... 574
     16.5.2.Action Networks ................................... 575
     16.5.3.ACDs Comparative Studies .......................... 576
     16.5.4.Summary ........................................... 577
16.6.Typical Architectures of Variants or ADP (Critics
     Illustrations) ........................................... 577
16.7.Applications of DSOPF to Power Systems Problems .......... 581
     References ............................................... 593

Index ......................................................... 595


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:14 2019. Размер: 34,800 bytes.
Посещение N 2301 c 01.09.2009