Jorgenson J. The heat kernel and theta inversion on SL2(C) (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаJorgenson J. The heat kernel and theta inversion on SL2(C) / Jorgenson J., Lang S. - New York: Springer, 2008. - x, 319 p.: ill. - (Springer monographs in mathematics). - Ref.: p.311-315. - Ind.: p.317-319. - ISBN 978-0-387-38031-5
 

Оглавление / Contents
 
Preface ......................................................... v
Introduction .................................................... 1

Part I Gaussians, Spherical Inversion, and the Heat Kernel

1. Spherical Inversion on SL2(C) ............................... 13
   1.1. The Iwasawa Decomposition, Polar Decomposition,
        and Characters ......................................... 15
        1.1.1. Characters ...................................... 16
        1.1.2. K-bi-invariant Functions ........................ 17
   1.2. Haar Measures .......................................... 19
   1.3. The Harish Transform and the Orbital Integral .......... 23
   1.4. The Mellin and Spherical Transforms .................... 25
   1.5. Computation of the Orbital Integral .................... 28
   1.6. Gaussians on G and Their Spherical Transform ........... 32
        1.6.1. The Polar Height ................................ 35
   1.7. The Polar Haar Measure and Inversion ................... 37
   1.8. Point-Pair Invariants, the Polar Height, and the
        Polar Distance ......................................... 41
2. The Heat Gaussian and Heat Kernel ........................... 45
   2.1. Dirac Families of Gaussians ............................ 45
        2.1.1. Scaling ......................................... 46
        2.1.2. Decay Property .................................. 48
   2.2. Convolution, Semigroup, and Approximations
        Properties ............................................. 49
        2.2.1. Approximation Properties ........................ 51
   2.3. Complexifying t and the Null Space of Heat
        Convolution ............................................ 54
   2.4. The Casimir Operator ................................... 55
        2.4.1. Scaling ......................................... 62
   2.5. The Heat Equation ...................................... 63
        2.5.1. Scaling ......................................... 65
3. QED, LEG, Transpose, and Casimir ............................ 67
   3.1. Growth and Decay, QED and LEG ......................... 67
   3.2. Casimir, Transpose, and Harmonicity .................... 70
   3.3. DUTIS .................................................. 76
   3.4. Heat and Casimir Eigenfunctions ........................ 78

Part II Enter Г: The General Trace Formula

4. Convergence and Divergence of the Selberg Trace ............. 85
   4.1. The Hermitian Norm ..................................... 86
   4.2. Divergence for Standard Cuspidal Elements .............. 89
        4.2.1. Cuspidal and Parabolic Subgroups ................ 89
   4.3. Convergence for the Other Elements of Г ................ 92
5. The Cuspidal and Noncuspidal Traces ......................... 97
   5.1. Some Group Theory ...................................... 98
        5.1.1. Conjugacy Classes .............................. 101
   5.2. The Double Trace and its Decomposition ................ 102
   5.3. Explicit Determination of the Noncuspidal Terms ....... 106
        5.3.1. The Volume Computation ......................... 107
        5.3.2. The Orbital Integral ........................... 108
   5.4. Cuspidal Conjugacy Classes ............................ 110

Part III The Heat Kernel on T\G/K

6. The Fundamental Domain ..................................... 117
   6.1. SL2(C) and the Upper Half-Space H3 .................... 118
   6.2. Fundamental Domain and Too ............................ 121
   6.3. Finiteness Properties ................................. 124
   6.4. Uniformities in Lemma 6.2.3 ........................... 130
   6.5. Integration on T\G/K .................................. 131
   6.6. Other Fundamental Domains ............................. 133
7. Г-Periodization of the Heat Kernel ......................... 135
   7.1. The Basic Estimate .................................... 135
        7.1.1. Convolution .................................... 136
   7.2. Heat Convolution and Eigenfunctions on T\G/K .......... 140
   7.3. Casimir on T\G/K ...................................... 145
   7.4. Measure-Theoretic Estimate for Convolution on T\G ..... 147
   7.5. Asymptotic Behavior of KtГ for t → ∞ ................... 149
8. Heat Kernel Convolution on L2cusp (T\G/K) ................... 151
   8.1. General Criteria for Compactness ...................... 152
   8.2. Estimates for the (Г - F∞)-Periodization .............. 155
   8.3. Fourier Series for the Г"U, Г∞-Periodizations of
        Gaussians ............................................. 157
        8.3.1. Preliminaries: The Г"U and Г∞-Periodizations ... 157
        8.3.2. The Fourier Series ............................. 158
   8.4. The Convolution Cuspidal Estimate ..................... 160
   8.5. Application to the Heat Kernel ........................ 161

Part IV Fourier-Eisenstein Eigenfunction Expansions

9. The Tube Domain for Г∞ ..................................... 167
   9.1. Differential-Geometric Aspects ........................ 167
   9.2. The Tube of fig.1R and its Boundary Relation with ∂fig.1R ... 169
   9.3. The fig.1-Normalizer of Г ................................ 171
   9.4. Totally Geodesic Surface in H3 ........................ 172
        9.4.1. The Half-Plane Hj2 .............................. 173
   9.5. Some Boundary Behavior of fig.1 in H3 Under Г ............ 175
        9.5.1. The Faces fig.6i of fig.1 and their Boundaries ....... 175
        9.5.2. H-triangle ..................................... 176
        9.5.3. Isometries of fig.1 ............................... 178
   9.6. The Group Г and a Basic Boundary Inclusion ............ 180
   9.7. The Set fig.3 its Boundary Behavior, and the Tube fig.4 ..... 181
   9.8. Tilings ............................................... 182
        9.8.1. Coset Representatives .......................... 184
   9.9. Truncations ........................................... 185
10.The ГU/U-Fourier Expansion of Eisenstein Series ............ 191
   10.1.Our Goal: The Eigenfunction Expansion ................. 191
   10.2.Epstein and Eisenstein Series ......................... 193
   10.3.The K-Bessel Function ................................. 197
        10.3.1.Gamma Function Identities ...................... 199
        10.3.2.Differential and Difference Relations .......... 201
   10.4.Functional Equation of the Dedekind Zeta Function ..... 202
   10.5.The Bessel-Fourier ГU/U-Expansion of Eisenstein
        Series ................................................ 206
        10.5.1 The Constant Term .............................. 211
   10.6.Estimates in Vertical Strips .......................... 213
   10.7.The Volume-Residue Formula ............................ 216
   10.8.The Integral over fig.1 and Orthogonalities .............. 218
11.Adjointness Formula and the Г\G-Eigenfunction Expansion .... 223
   11.1.Haar Measure and the Mellin Transform ................. 224
        11.1.1.Appendix on Fourier Inversion .................. 226
   11.2.Adjointness Formula and the Constant Term ............. 229
        11.2.1.Adjointness Formula ............................ 230
   11.3.The Eisenstein Coefficient E * fig.5 and the Expansion
        for fig.5 ∈ Cc∞ Г/G/K ..................................... 232
   11.4.The Heat Kernel Eigenfunction Expansion ............... 237

Part V The Eisenstein-Cuspidal Affair

12.The Eisenstein F-Asymptotics ............................... 243
   12.1.The Improper Integral of Eigenfunction Expansion
        over T\G .............................................. 243
        12.1.1.L2-Cuspidal Trace .............................. 244
   12.2.Green's Theorem on fig.1 ≤ Y  ............................ 247
   12.3.Application to Eisenstein Functions ................... 251
   12.4.The Constant-Term Integral Asymptotics ................ 255
        12.4.1 Appendix ....................................... 257
   12.5.The Nonconstant-Term Error Estimate ................... 258
13.The Cuspidal Trace F-Asymptotics ........................... 261
   13.1.The Nonregular Cuspidal Integral over fig.1 ≤ Y .......... 262
   13.2.Asymptotic Expansion of the Nonregular Cuspidal
        Trace ................................................. 267
   13.3.The Regular Cuspidal Integral over fig.1 ≤ Y ............. 272
   13.4.Nonspecial Regular Cuspidal Asymptotics ............... 275
   13.5.Action of the Special Subset .......................... 277
   13.6.Special Regular Cuspidal Asymptotics .................. 280
14.Analytic Evaluations ....................................... 287
   14.1.Partial Sums Asymptotics for fig.7 and the Euler 
        ....................................................... 287
   14.2.Estimates Using Lattice-Point Counting ................ 290
   14.3.Partial-Sums Asymptotics for fig.7i and the Euler 
        Constant .............................................. 292
   14.4.The Hurwitz Constant .................................. 296
        14.4.1.The Complex Case, with Z[i] .................... 297
        14.4.2.Average of the Hurwitz Constant ................ 298
   14.5.∫0fig.5φ (r)rh{r)dr when φ = gt .......................... 301
   14.6.Evaluation of C'Y0 and C1 .............................. 303
   14.7.The Theta Inversion Formula ........................... 308

References .................................................... 311

Index ......................................................... 317


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:14 2019. Размер: 14,265 bytes.
Посещение N 1686 c 01.09.2009