Mathematical surveys and monographs; 131 (Providence, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFeng J. Large deviations for stochastic processes / Feng J., Kurtz T.G. - Providence: American Mathematical Society, 2006. - xii, 410 p. - (Mathematical surveys and monographs; Vol.131). - Bibliogr.: p.403-408. - Ind.: p.409-410. - ISBN 0-8218-4145-9
 

Оглавление / Contents
 
Preface ........................................................ ix
Notation ....................................................... xi
Introduction .................................................... 1

Chapter 1. Introduction ......................................... 3

1.1. Basic methodology .......................................... 4
1.2. The basic setting for Markov processes ..................... 6
1.3. Related approaches ......................................... 8
1.4. Examples .................................................. 10
1.5. An outline of the major obstacles ......................... 25

Chapter 2. An overview ......................................... 29

2.1. Basic setup ............................................... 30
2.2. Compact state spaces ...................................... 30
2.3. General state spaces ...................................... 33


Part 1. The general theory of large deviations ................. 39


Chapter 3. Large deviations and exponential tightness .......... 41

3.1. Basic definitions and results ............................. 41
3.2. Identifying a rate function ............................... 50
3.3. Rate functions in product spaces .......................... 53

Chapter 4. Large deviations for stochastic processes ........... 57

4.1. Exponential tightness for processes ....................... 57
4.2. Large deviations under changes of time-scale .............. 62
4.3. Compactification .......................................... 64
4.4. Large deviations in the compact uniform topology .......... 65
4.5. Exponential tightness for solutions of martingale
     problems .................................................. 67
4.6. Verifying compact containment ............................. 71
4.7. Finite dimensional determination of the process rate
     function .................................................. 73


Part 2. Large deviations for Markov processes and semigroup
        convergence ............................................ 77


Chapter 5. Large deviations for Markov processes and
           nonlinear semigroup convergence ..................... 79

5.1. Convergence of sequences of operator semigroups ........... 79
5.2. Applications to large deviations .......................... 82

Chapter 6. Large deviations and nonlinear semigroup
           convergence using viscosity solutions ............... 97

6.1. Viscosity solutions, definition and convergence ........... 98
6.2. Large deviations using viscosity semigroup convergence ... 106

Chapter 7. Extensions of viscosity solution methods ........... 109

7.1. Viscosity solutions, definition and convergence .......... 109
7.2. Large deviation applications ............................. 126
7.3. Convergence using projected operators .................... 130

Chapter 8. The Nisio semigroup and a control representation
           of the rate function ............................... 135

8.1. Formulation of the control problem ....................... 135
8.2. The Nisio semigroup ...................................... 141
8.3. Control representation of the rate function .............. 142
8.4. Properties of the control semigroup V .................... 143
8.5. Verification of semigroup representation ................. 151
8.6. Verifying the assumptions ................................ 155


Part 3. Examples of large deviations and the comparison
        principle ............................................. 163


Chapter 9. The comparison principle ........................... 165

9.1. General estimates ........................................ 165
9.2. General conditions in Rd ................................. 172
9.3. Bounded smooth domains in Rd with (possibly oblique)
     reflection ............................................... 179
9.4. Conditions for infinite dimensional state space .......... 184

Chapter 10.Nearly deterministic processes in Rd ............... 199

10.1.Processes with independent increments .................... 199
10.2.Random walks ............................................. 207
10.3.Markov processes ......................................... 207
10.4.Nearly deterministic Markov chains ....................... 219
10.5.Diffusion processes with reflecting boundaries ........... 221

Chapter 11.Random evolutions .................................. 229

11.1.Discrete time, law of large numbers scaling .............. 230
11.2.Continuous time, law of large numbers scaling ............ 244
11.3.Continuous time, central limit scaling ................... 260
11.4.Discrete time, central limit scaling ..................... 266
11.5.Diffusions with periodic coefficients .................... 269
11.6.Systems with small diffusion and averaging ............... 271

Chapter 12.Occupation measures ................................ 283

12.1.Occupation measures of a Markov process - Discrete
     time ..................................................... 284
12.2.Occupation measures of a Markov process - Continuous
     time ..................................................... 288

Chapter 13.Stochastic equations in infinite dimensions ......... 293

13.1.Stochastic reaction-diffusion equations on a rescaled
     lattice .................................................. 293
13.2.Stochastic Cahn-Hilliard equations on rescaled
     lattice .................................................. 305
13.3.Weakly interacting stochastic particles .................. 315

Appendix ...................................................... 343

Appendix A. Operators and convergence in function spaces ...... 345

         A.l. Semicontinuity .................................. 345
         A.2. General notions of convergence .................. 346
         A.3. Dissipativity of operators ...................... 350

Appendix B. Variational constants, rate of growth and
            spectral theory for the semigroup of positive
            linear operators .................................. 353

         B.l. Relationship to the spectral theory of
              positive operators .............................. 354
         B.2. Relationship to some variational constants ...... 357

Appendix C. Spectral properties for discrete and continuous
            Laplacians ........................................ 367

         C.l. The case of d = 1 ............................... 368
         C.2. The case of d > 1 ............................... 368
         C.3. E = L2(0) ∩ {p: ∫ pdx = 0} ...................... 369
         C.4. Other useful approximations ..................... 370

Appendix D.Results from mass transport theory ................. 371

         D.l. Distributional derivatives ...................... 371
         D.2. Convex functions ................................ 375
         D.3. The p-Wasserstein metric space .................. 376
         D.4. The Monge-Kantorovich problem ................... 378
         D.5. Weighted Sobolev spaces Hμ1(Rd) and Hμ-1(Rd) ...... 382
         D.6. Fisher information and its properties ........... 386
         D.7. Mass transport inequalities ..................... 394
         D.8. Miscellaneous ................................... 401

Bibliography .................................................. 403


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:12 2019. Размер: 11,330 bytes.
Посещение N 1549 c 01.09.2009