Andrews D. Structured light and its applications: an introduction to phase-structured beams and nanoscale optical forces (Amsterdam, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAndrews D. Structured light and its applications: an introduction to phase-structured beams and nanoscale optical forces - Amsterdam: Elsevier, 2008. - x, 341 p.: ill. - Inc. bibl. ref.: p.335-341. - ISBN 978-0-12-374027-4
 

Оглавление / Contents
 
Author Affiliations ............................................ xi
Preface ...................................................... xiii

1. Introduction to Phase-Structured Electromagnetic Waves ....... 1
      Les Allen and Miles Padgett

   1.1. Introduction ............................................ 1
   1.2. Laguerre-Gaussian Beams and Orbital Angular Momentum .... 2
   1.3. Bessel and Mathieu Beams ................................ 7
   1.4. General Solution of the Wave Equation ................... 8
   1.5. Classical or Quantum? ................................... 8
   1.6. Creating Laguerre-Gaussian Beams with Lenses and
        Holograms ............................................... 9
   1.7. Coherence: Spatial and Temporal ........................ 11
   1.8. Transformations Between Basis Sets ..................... 12
   1.9. Conclusion ............................................. 14
   References .................................................. 15

2. Angular Momentum and Vortices in Optics ..................... 19
      Gerard Nienhuis

   2.1. Introduction ........................................... 19
   2.2. Classical Angular Momentum of Fields and Particles ..... 22
        2.2.1. Angular Momentum of Particles and Radiation ..... 22
        2.2.2. Rate of Change of Contributions to Angular
               Momentum ........................................ 24
   2.3. Separation of Radiative Angular Momentum in L and S .... 24
        2.3.1. Classical Description ........................... 24
        2.3.2. Quantum Operators ............................... 25
   2.4. Multipole Fields and Their Vortex Structure ............ 27
        2.4.1. Spherical Multipole Fields ...................... 27
        2.4.2. Cylindrical Multipole Fields .................... 30
   2.5. Angular Momentum of Monochromatic Paraxial Beams ....... 33
        2.5.1. Paraxial Approximation .......................... 33
        2.5.2. Angular Momentum of a Monochromatic Beam ........ 34
        2.5.3. Uniform Orbital and Spin Angular Momentum ....... 36
        2.5.4. Nonuniform Polarization ......................... 38
   2.6. Quantum Description of Paraxial Beams .................. 40
        2.6.1. Quantum Operators for Paraxial Fields ........... 40
        2.6.2. Quantum Operators for Spin and Orbital
               Angular Momentum ................................ 41
   2.7. Nonmonochromatic Paraxial Beam ......................... 42
        2.7.1. Angular Momentum of Nonmonochromatic Beam ....... 42
        2.7.2. Spin of Rotating Polarization ................... 43
        2.7.3. Orbital Angular Momentum of Rotating Mode
               Pattern ......................................... 44
        2.7.4. Angular Momentum of Rotating Nonuniform
               Polarization .................................... 46
   2.8. Operator Description of Classical Paraxial Beams ....... 48
        2.8.1. Dirac Notation of Paraxial Beams ................ 48
        2.8.2. Paraxial Beams and Quantum Harmonic
               Oscillators ..................................... 49
        2.8.3. Raising and Lowering Operators for Modes ........ 51
        2.8.4. Orbital Angular Momentum and the Hermite-
               Laguerre Sphere ................................. 53
   2.9. Dynamics of Optical Vortices ........................... 55
        2.9.1. Invariant Mode Patterns ......................... 55
        2.9.2. Rotating Patterns of Vortices with Same
               Orientation ..................................... 57
        2.9.3. Vortex Creation and Annihilation ................ 57
   2.10.Conclusion ............................................. 59
   References .................................................. 60

3. Singular Optics and Phase Properties ........................ 63
      Enrique J. Galvez

   3.1. Fundamental Phase Singularities ........................ 64
   3.2. Beams with Composite Vortices .......................... 69
   3.3. Noninteger Vortex Beams ................................ 72
   3.4. Propagation Dynamics ................................... 74
   3.5. Conclusions ............................................ 74
   Acknowledgments ............................................. 75
   References .................................................. 75

4. Nanoscale Optics: Interparticle Forces ...................... 79
      Luciana C. Davila Romero and David L. Andrews

   4.1. Introduction ........................................... 79
   4.2. QED Description of Optically Induced Pair Forces ....... 82
        4.2.1. Quantum Foundations ............................. 82
        4.2.2. Defining the Geometry ........................... 85
        4.2.3. Tumbling Cylindrical Pair ....................... 87
        4.2.4. Collinear Pair .................................. 90
        4.2.5. Cylindrical Parallel Pair ....................... 92
        4.2.6. Spherical Particles ............................. 94
        4.2.7. Spherical Particles in a Laguerre-Gaussian
               Beam ............................................ 96
   4.3. Overview of Applications ............................... 98
   4.4. Discussion ............................................ 101
   Acknowledgments ............................................ 102
   References ................................................. 102

5. Near-Field Optical Micromanipulation ....................... 107
      Kishan Dholakia and Peter J. Reece

   5.1. Introduction .......................................... 107
        5.1.1. What Is the Near Field? ........................ 108
        5.1.2. Optical Geometries for the Near Field and
               Initial Guiding Studies ........................ 109
   5.2. Theoretical Considerations for Near-Field Trapping .... 111
   5.3. Experimental Guiding and Trapping of Particles in
        the Near Field ........................................ 114
        5.3.1. Near-Field Surface Guiding and Trapping ........ 114
        5.3.2. Trapping Using TIR Objectives .................. 122
        5.3.3. Micromanipulation Using Optical Waveguides ..... 126
   5.4. Emergent Themes in the Near Field ..................... 129
        5.4.1. Optical Force Induced Self-Organization of
               Particles in the Near Field .................... 129
        5.4.2. Near-Field Trapping with Advanced Photonic
               Architectures .................................. 132
   5.5. Conclusions ........................................... 134
   Acknowledgments ............................................ 134
   References ................................................. 134

6. Holographic Optical Tweezers ............................... 139
      Gabriel C. Spalding, Johannes Courtial, and
      Roberto Di Leonardo

   6.1. Background ............................................ 139
   6.2. Example Rationale for Constructing Extended Arrays
        of Traps .............................................. 140
   6.3. Experimental Details .................................. 142
        6.3.1. The Standard Optical Train ..................... 142
   6.4. Algorithms for Holographic Optical Traps .............. 149
        6.4.1. Random Mask Encoding ........................... 151
        6.4.2. Superposition Algorithms ....................... 152
        6.4.3. Gerchberg-S ax ton Algorithms .................. 153
        6.4.4. Direct-Search Algorithm and Simulated
               Annealing ...................................... 156
        6.4.5. Summary ........................................ 156
        6.4.6. Alternative Means of Creating Extended
               Optical Potential Energy Landscapes ............ 157
   6.5. The Future of Holographic Optical Tweezers ............ 162
   Acknowledgments ............................................ 162
   References ................................................. 162

7. Atomic and Molecular Manipulation Using Structured Light ... 169
     Mohamed Babiker and David L. Andrews

   7.1. Introduction .......................................... 169
   7.2. A Brief Overview ...................................... 170
   7.3. Transfer of OAM to Atoms and Molecules ................ 171
   7.4. Doppler Forces and Torques ............................ 172
        7.4.1. Essential Formalism ............................ 173
        7.4.2. Transient Dynamics ............................. 175
        7.4.3. Steady State Dynamics .......................... 178
        7.4.4. Dipole Potential ............................... 179
   7.5. The Doppler Shift ..................................... 180
        7.5.1. Trajectories ................................... 181
        7.5.2. Multiple Beams ................................. 181
        7.5.3. Two- and Three-Dimensional Molasses ............ 184
   7.6. Rotational Effects on Liquid Crystals ................. 185
   7.7. Comments and Conclusions .............................. 187
   Acknowledgments ............................................ 191
   References ................................................. 191

8. Optical Vortex Trapping and the Dynamics of Particle
   Rotation ................................................... 195
      Timo A. Nieminen, Simon Parkin, Theodor Asavei,
      Vincent L. Y. Loke, Norman R. Heckenberg, and
      Halina Rubinsztein-Dunlop

   8.1. Introduction .......................................... 195
   8.2. Computational Electromagnetic Modeling of Optical
        Trapping .............................................. 196
   8.3. Electromagnetic Angular Momentum ...................... 199
   8.4. Electromagnetic Angular Momentum of Paraxial and
        Nonparaxial Optical Vortices .......................... 202
   8.5. Nonparaxial Optical Vortices .......................... 205
   8.6. Trapping in Vortex Beams .............................. 211
   8.7. Symmetry and Optical Torque ........................... 218
   8.8. Zero Angular Momentum Optical Vortices ................ 226
   8.9. Gaussian "Longitudinal" Optical Vortex ................ 228
   8.10.Conclusion ............................................ 231
   References ................................................. 231

9. Rotation of Particles in Optical Tweezers .................. 237
      Miles Padgett and Jonathan Leach

   9.1. Introduction .......................................... 237
   9.2. Using Intensity Shaped Beams to Orient and Rotate
        Trapped Objects ....................................... 238
   9.3. Angular Momentum Transfer to Particles Held in
        Optical Tweezers ...................................... 240
   9.4. Out of Plane Rotation in Optical Tweezers ............. 242
   9.5. Rotation of Helically Shaped Particles in Optical
        Tweezers .............................................. 243
   9.6. Applications of Rotational Control in Optical
        Tweezers .............................................. 244
   References ................................................. 247

10.Rheological and Viscometric Methods ........................ 249
      Simon J. W. Parkin, Gregor Knöner, Timo
      A. Nieminen, Norman R. Heckenberg, and
      Halina Rubinsztein-Dunlop

   10.1.Introduction .......................................... 249
   10.2.Optical Torque Measurement ............................ 251
        10.2.1.Measuring Spin Angular Momentum ................ 251
        10.2.2.Measuring Orbital Angular Momentum ............. 253
   10.3.A Rotating Optical Tweezers Based Microviscometer ..... 254
        10.3.1.Experimental Setup for a Spin Based
               Microviscometer ................................ 255
        10.3.2.Results and Analysis ........................... 256
   10.3.3.Orbital Angular Momentum Used for Microviscometry ... 261
   10.4.Applications .......................................... 264
        10.4.1.Picolitre Viscometry ........................... 264
        10.4.2.Medical Samples ................................ 265
        10.4.3.Flow Field Measurements ........................ 266
   10.5.Conclusion ............................................ 268
   References ................................................. 268

11.Orbital Angular Momentum in Quantum Communication
   and Information ............................................ 271
      Sonja Franke-Arnold and John Jeffers

   11.1.Sending and Receiving Quantum Information ............. 273
        11.1.1.Generation of Entangled OAM States ............. 275
        11.1.2.Detection of OAM States at the Single Photon
               Level .......................................... 277
        11.1.3.Intrinsic Security ............................. 279
   11.2.Exploring the OAM State Space ......................... 280
        11.2.1.Superpositions of OAM States ................... 280
        11.2.2.Generating Entangled Superposition States ...... 283
        11.2.3. Storing OAM Information ....................... 284
   11.3.Quantum Protocols ..................................... 286
        11.3.1.Advantages of Higher Dimensions ................ 286
        11.3.2.Communication Schemes .......................... 287
   11.4.Conclusions and Outlook ............................... 290
   Acknowledgments ............................................ 291
   References ................................................. 291

12.Optical Manipulation of Ultracold Atoms .................... 295
      G.Juzeliunas and P.Öhberg

   12.1.Background ............................................ 295
   12.2.Optical Forces and Atom Traps ......................... 296
   12.3.The Quantum Gas: Bose-Einstein Condensates ............ 299
        12.3.1.Bose-Einstein Condensation in a Cloud of
               Atoms .......................................... 300
        12.3.2.The Condensate and Its Description ............. 301
        12.3.3.Phase Imprinting the Quantum Gas ............... 303
   12.4.Light-Induced Gauge Potentials for Cold Atoms ......... 308
        12.4.1.Background ..................................... 308
        12.4.2.General Formalism for the Adiabatic Motion
               of Atoms in Light Fields ....................... 309
   12.5.Light-Induced Gauge Potentials for the A Scheme ....... 311
        12.5.1.General ........................................ 311
        12.5.2.Adiabatic Condition ............................ 313
        12.5.3.Effective Vector and Trapping Potentials ....... 314
        12.5.4.Co-Propagating Beams with Orbital Angular
               Momentum ....................................... 315
        12.5.5.Counterpropagating Beams with Shifted
               Transverse Profiles ............................ 317
   12.6.Light-Induced Gauge Fields for a Tripod Scheme ........ 320
        12.6.1.General ........................................ 320
        12.6.2.The Case where S12 = 0 ......................... 322
   12.7.Ultra-Relativistic Behavior of Cold Atoms in Light-
        Induced Gauge Potentials .............................. 323
        12.7.1.Introduction ................................... 323
        12.7.2.Formulation .................................... 324
        12.7.3.Quasi-Relativistic Behavior of Cold Atoms ...... 325
        12.7.4.Proposed Experiment ............................ 327
   12.8.Final Remarks ......................................... 329
   References ................................................. 330

Index ......................................................... 335


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:12 2019. Размер: 19,746 bytes.
Посещение N 2637 c 01.09.2009