Barnsley M.J. Environmental modeling: a practical introduction (Boca Raton, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBarnsley M.J. Environmental modeling: a practical introduction. - Boca Raton: CRC Press, 2007. - xxvi, 406 p.: ill., charts. + 1 CD-ROM. - Ref.: p.387-396. - Ind.: p.396-406. - ISBN 0-415-30054-1 043 - ISBN 978-90-5948-3
 

Место хранения: 043 | | Институт углехимии и химического материаловедения CO РАН (В 2010 г. институт отделился от Института угля (065)) | Кемерово

Оглавление / Contents
 
1. MODELS AND MODELING .......................................... 1
   1.1. Why Model? .............................................. 1
   1.2. The Modeling Process .................................... 2
        1.2.1. Identifying the Nature and Scope of the
               Problem .......................................... 2
        1.2.2. Developing the Conceptual Model .................. 3
        1.2.3. Stating the Assumptions .......................... 5
        1.2.4. Formulating the Mathematical Model ............... 6
        1.2.5. Implementing the Computational Model ............ 14
        1.2.6. Evaluating the Model ............................ 17
   1.3. Llyn Efyrnwy ........................................... 20
   1.4. Structure and Objectives of the Book ................... 20
   1.5. Resources on the CD-ROM ................................ 24
   1.6. Typographical Conventions .............................. 25
2. VISUALIZING ENVIRONMENTAL DATA .............................. 27
   2.1. Introduction ........................................... 27
   2.2. Creating 2D Plots ...................................... 30
        2.2.1. Creating a Simple x-y Plot ...................... 30
        2.2.2. Labeling the Axes of a Plot ..................... 33
        2.2.3. Plotting Multiple Data Series ................... 34
        2.2.4. Plotting with Different Data Styles ............. 36
   2.3. Plotting Time-Series Data .............................. 37
        2.3.1. Plotting Multiple Time-Series ................... 40
        2.3.2. Further Control over Plotting Styles ............ 41
   2.4. Plotting in Three Dimensions ........................... 42
        2.4.1. Description of the Digital Elevation Data Set ... 43
        2.4.2. Visualizing 3D Data in gnuplot .................. 44
        2.4.3. Altering the View Direction ..................... 45
        2.4.4. Generating a 3D Surface Plot .................... 46
        2.4.5. Hidden-Line Removal ............................. 49
        2.4.6. Producing Solid Surface Models .................. 50
        2.4.7. Contouring 3D Surface Plots ..................... 51
   2.5. Printing Plots ......................................... 55
   2.6. Exporting Graphics Files ............................... 56
   2.7. Command-Line Scripts ................................... 57
   2.8. Summary ................................................ 57
3. PROCESSING ENVIRONMENTAL DATA ............................... 59
   3.1. Introduction ........................................... 59
   3.2. Structure of the Llyn Efyrnwy Precipitation Data ....... 60
   3.3. Creating and Running a Simple gawk Program ............. 62
   3.4. Using gawk to Process Selected Fields .................. 64
   3.5. Storing the gawk Program in a File ..................... 66
   3.6. Using gawk to Process Selected Records ................. 67
   3.7. Controlling the Format of the Output ................... 70
   3.8. Redirecting the Output to a File ....................... 73
   3.9. Visualizing the Output Data ............................ 74
   3.10.Logical or Boolean Operators in gawk ................... 75
   3.11.Summary ................................................ 76
4. WIND SPEED AND WIND POWER ................................... 79
   4.1. Introduction ........................................... 79
   4.2. Description of the Wind Speed Data ..................... 83
   4.3. Calculating the Annual Mean Wind Speed ................. 85
   4.4. Determining the Maximum Wind Speed ..................... 88
   4.5. Exploring Wind Speed Variability ....................... 92
        4.5.1. Determining the Absolute Frequency
               Distribution .................................... 92
        4.5.2. Determining the Relative Frequency 
               Distribution .................................... 96
        4.5.3. Probability Distributions and Probability
               Density Functions .............................. 100
        4.5.4. Function Fitting in gnuplot .................... 102
        4.5.5. Probability of the Wind Speed Exceeding
               a Given Value .................................. 104
   4.6. Wind Energy and Power ................................. 105
        4.6.1. Theoretical Basis .............................. 105
        4.6.2. Application to Llyn Efyrnwy Data ............... 108
        4.6.3. Visualizing the Output ......................... 109
   4.7. Summary ............................................... 110
5. SOLAR RADIATION AT EARTH'S SURFACE ......................... 113
   5.1. Introduction .......................................... 113
   5.2. Description of the Solar Irradiance Data .............. 114
   5.3. Analyzing the Observations ............................ 117
        5.3.1. Data Extraction and Pre-Processing ............. 117
        5.3.2. Visualizing the Output ......................... 118
   5.4. Modeling Solar Irradiance ............................. 120
        5.4.1. Formulating the Mathematical Model ............. 121
        5.4.2. Implementing the Computational Model ........... 129
        5.4.3. Enhancing the Implementation ................... 135
        5.4.4. Visualizing the Simulated Variation in Solar
               Irradiance ..................................... 138
   5.5. Summary ............................................... 140
6. LIGHT INTERACTION WITH A PLANT CANOPY ...................... 143
   6.1. Introduction .......................................... 143
   6.2. Developing a Model of Light Interaction with Plant
        Canopies .............................................. 147
        6.2.1. Specifying the Conceptual Model ................ 148
        6.2.2. Formulating the Mathematical Model ............. 148
        6.2.3. Implementing the Computational Model ........... 153
        6.2.4. Running the Model .............................. 155
        6.2.5. Evaluating the Output from the Computational
               Model .......................................... 155
   6.3. A Two-Layer Light Interaction Model ................... 157
        6.3.1. Improving the Conceptual Model ................. 157
        6.3.2. Reformulating the Mathematical Model ........... 158
        6.3.3. Implementing the Two-Layer Model in gawk ....... 160
        6.3.4. Running the Two-Layer Model .................... 161
        6.3.5. Evaluating the Two-Layer Model ................. 161
   6.4. Accounting for Multiple Scattering .................... 161
        6.4.1. Enhancing the Conceptual and Mathematical
               Models ......................................... 161
        6.4.2. Implementing the Revised Two-Layer Model ....... 163
        6.4.3. Running the Revised Two-Layer Model ............ 163
        6.4.4. Evaluating the Revised Two-Layer Model ......... 163
   6.5. Multiple Leaf-Layer Models ............................ 165
        6.5.1. Enhancing the Conceptual Model ................. 165
        6.5.2. Formulating the Three-Layer Model .............. 166
        6.5.3. Implementing the Three-Layer Model ............. 168
        6.5.4. Running the Three-Layer Model .................. 170
        6.5.5. Evaluating the Multiple-Layer Model ............ 170
   6.6. Summary ............................................... 171
7. ANALYTICAL AND NUMERICAL SOLUTIONS ......................... 173
   7.1. Introduction .......................................... 173
   7.2. An Exact Analytical Solution to the Two-Layer Model ... 174
        7.2.1. Reformulating the Two-Layer Model .............. 174
        7.2.2. Implementing and Running the Exact
               Analytical Solution ............................ 176
        7.2.3. Evaluating the Exact Analytical Solution ....... 177
   7.3. An Iterative Numerical Solution to the Multiple
        Leaf-Layer Model ...................................... 178
        7.3.1. Revisiting the Conceptual Model ................ 179
        7.3.2. Formulating the Mathematical Model ............. 181
        7.3.3. Implementing the Multiple Leaf-Layer Model ..... 183
        7.3.4. Running the Multiple Leaf-Layer Model .......... 188
        7.3.5. Evaluating the Multiple Leaf-Layer Model ....... 188
        7.3.6. How Many Iterations are Required? .............. 190
        7.3.7. Objective Determination of the Required
               Number of Iterations ........................... 192
        7.3.8. Running and Evaluating the Revised
               Computational Model ............................ 195
   7.4. Bouguer's Law and the Attenuation Coefficient ......... 196
        7.4.1. Implementing a Computational Model of
               Bouguer's Law .................................. 198
        7.4.2. Running and Evaluating the Modified
               Computational Model ............................ 198
        7.4.3. Visualizing the Output ......................... 200
        7.4.4. Function Fitting in gnuplot .................... 200
   7.5. Summary ............................................... 202
8. POPULATION DYNAMICS ........................................ 205
   8.1. Introduction .......................................... 205
   8.2. Unconstrained or Density-Independent Growth ........... 206
        8.2.1. Development of the Conceptual Model ............ 206
        8.2.2. Formulation, Implementation and Evaluation
               of the Discrete Model .......................... 207
        8.2.3. Formulation, Implementation and Evaluation
               of the Continuous Model ........................ 214
   8.3. Constrained or Density-Dependent Growth ............... 218
        8.3.1. Developing the Conceptual Model ................ 219
        8.3.2. Continuous Logistic Model ...................... 219
        8.3.3. Discrete Logistic Model ........................ 222
   8.4. Numerical Integration (or Stepping) Methods ........... 228
        8.4.1. Euler's Method ................................. 230
        8.4.2. Runge-Kutta Methods ............................ 234
   8.5. Inter-Specific Competition ............................ 238
        8.5.1. Conceptual Basis and Mathematical
               Formulation .................................... 238
        8.5.2. Implementation ................................. 240
        8.5.3. Running the Model .............................. 242
        8.5.4. Visualization .................................. 242
   8.6. Predator-Prey Relationships ........................... 244
        8.6.1. Conceptual Basis and Mathematical
               Formulation .................................... 244
        8.6.2. Implementation ................................. 245
        8.6.3. Running the Model .............................. 245
        8.6.4. Visualization .................................. 247
   8.7. Summary ............................................... 248
9. BIOSPHERIC FEEDBACK ON DAISYWORLD .......................... 251
   9.1. Introduction .......................................... 251
   9.2. Description and Assumptions of the Conceptual Model ... 253
   9.3. Formulating the Mathematical Model .................... 254
   9.4. Implementing the Computational Model .................. 258
        9.4.1. Implementation 1: Constant Solar Luminosity .... 258
        9.4.2. Implementation 2: Increasing Solar
               Luminosity ..................................... 265
        9.4.3. Implementation 3: Exploring the Impact of
               Biodiversity ................................... 270
        9.4.4. Implementation 4: Modularizing the Code with
               User-Defined Functions ......................... 274
   9.5. Sensitivity Analysis and Uncertainty Analysis ......... 282
   9.6. Summary ............................................... 286
10.MODELING INCIDENT SOLAR RADIATION AND HYDROLOGICAL
   NETWORKS OVER NATURAL TERRAIN .............................. 289
   10.1.Introduction .......................................... 289
   10.2.Visualizing Digital Elevation Data as an Array ........ 290
   10.3.Handling Multi-Dimensional Arrays in gawk ............. 291
   10.4.Determining Terrain Gradient and Aspect ............... 293
        10.4.1.Formulation .................................... 293
        10.4.2.Implementation ................................. 294
        10.4.3.Evaluation ..................................... 298
        10.4.4.Visualization .................................. 298
   10.5.Solar Irradiance on Sloping Terrain ................... 300
        10.5.1.Formulation .................................... 300
        10.5.2.Implementation ................................. 301
        10.5.3.Evaluation ..................................... 306
        10.5.4.Visualization .................................. 307
   10.6.Modeling Hydrological Networks ........................ 309
        10.6.1.Implementation ................................. 310
        10.6.2.Evaluation ..................................... 313
        10.6.3.Visualization .................................. 313
        10.6.4.Modified Implementation ........................ 315
        10.6.5.Evaluation of the Modified Implementation ...... 315
        10.6.6.Visualization of the LDD Vectors on a Solid
               Surface Model .................................. 315
   10.7.Summary and Further Directions ........................ 318

A. INSTALLING AND RUNNING THE SOFTWARE ........................ 321
   A.l. Introduction .......................................... 321
   A.2. Some Basic Computing Concepts ......................... 321
        A.2.1. Operating System ............................... 321
        A.2.2. Files, Directories, Paths and File Systems ..... 322
   A.3. Installing and Running gnuplot ........................ 323
        A.3.1. Instructions for Microsoft Windows ............. 324
        A.3.2. Instructions for GNU/Linux ..................... 326
   A.4. Installing and Running gawk ........................... 329
        A.4.1. Instructions for Microsoft Windows ............. 329
        A.4.2. Instructions for GNU/Linux ..................... 333
В. GNU GENERAL PUBLIC LICENSE ................................. 335
   B.l. Preamble .............................................. 335
   B.2. Terms and Conditions for Copying, Distribution and
        Modification .......................................... 336
   B.3. No Warranty ........................................... 340
С. GNUPLOT LICENSE ............................................ 341
D. STANDARDS .................................................. 343
   D.l. International Standard Date and Time Notation ......... 343
   D.2. SI Units (Systeme International d'Unites) ............. 344
E. SOLUTIONS TO EXERCISES ..................................... 347
F. ACRONYMS AND ABBREVIATIONS ................................. 377
G. LIST OF SYMBOLS ............................................ 381

REFERENCES .................................................... 387

INDEX ......................................................... 397


List of Figures

   1.1. Schematic representation of the modeling process ........ 2
   1.2. Examples of some of the symbols used in Forrester
        diagrams ................................................ 5
   1.3. Forms of various mathematical functions ................. 8
   1.4. Graphical representation of different system states .... 11
   1.5. Schematic representation of a feedback relation ........ 12
   1.6. Negative and positive feedback relations ............... 12
   1.7. Schematic representation of a branching or splitting
        relation ............................................... 13
   1.8. Photograph of Llyn Efyrnwy ............................. 20
   2.1. GUI for the version of gnuplot for Microsoft Windows ... 29
   2.2. Extract from the data on air temperature at Llyn
        Efyrnwy throughout 1998 (le98temp.dat; first and
        last 10 lines only) .................................... 30
   2.3. Simple x-y plot of the maximum air temperature
        measured at Llyn Efyrnwy every 12 hours throughout
        1998 ................................................... 31
   2.4. Simple x-y plot of the maximum air temperature
        measured at Llyn Efyrnwy every 12 hours throughout
        1998, with labeled axes and a boxed key ................ 33
   2.5. Simple x-y plot of the maximum and minimum air
        temperatures measured at Llyn Efyrnwy every 12
        hours throughout 1998 .................................. 36
   2.6. Plot of the maximum and minimum air temperatures
        measured at Llyn Efyrnwy every 12 hours between
        March 12, 1998 and July 1, 1998, illustrating the
        lines data style ....................................... 37
   2.7. Plot of the maximum and minimum air temperatures
        measured at Llyn Efyrnwy every 12 hours between
        March 12, 1998 and July 1, 1998, illustrating the
        linespoints and boxes data styles ...................... 38
   2.8. Time-series plot of the maximum and minimum air
        temperatures measured at Llyn Efyrnwy every 12
        hours between March 12, 1998 and July 1, 1998 .......... 39
   2.9. Extract from the data on precipitation at Llyn
        Efyrnwy during 1998 (le98rain.dat; first 12 lines
        only) .................................................. 40
   2.10.A plot of two time-series (maximum air temperature
        and precipitation at Llyn Efyrnwy) contained in 
        separate data files .................................... 41
   2.11.Output from gnuplot's test command for the epslatex
        terminal type .......................................... 43
   2.12.First 10 lines and last 10 lines of the Llyn Efyrnwy
        DEM data file, efyrnwy.dem ............................. 44
   2.13.Visualization of the Llyn Efyrnwy DEM .................. 45
   2.14.Viewing the Llyn Efyrnwy DEM from a different
        direction .............................................. 46
   2.15.Wire-frame surface (10 x 10 element grid) generated
        from the Llyn Efyrnwy DEM .............................. 47
   2.16.Wire-frame surface (51 x 51 element grid) generated
        from the Llyn Efyrnwy DEM .............................. 48
   2.17.Wire-frame surface (51 x 51 element grid) generated
        from the Llyn Efyrnwy DEM, with hidden line removal .... 49
   2.18.Grayscale rendered surface model of the terrain
        elevation close to Llyn Efyrnwy ........................ 50
   2.19.Visualization of the Llyn Efyrnwy DEM, with a contour
        map added to the base of the plot ...................... 52
   2.20.Extracts from Llyn Efyrnwy contour line data file
        (contours.dat; lines 1-10, 55-70 and 840-856) .......... 54
   2.21.Contour map of the terrain around Llyn Efyrnwy ......... 55
   3.1. Partial contents of the file rain981e.dat (first 25
        records) ............................................... 61
   3.2. Operation of a gawk program ............................ 64
   3.3. Operation of a gawk program designed to manipulate
        and print selected fields of an input data file ........ 65
   3.4. Operation of a gawk program designed to print
        selected records and fields of an input data file ...... 69
   3.5. First 12 lines of output produced by Program 3.4
        when applied to thedatain rain981e.dat ................. 73
   3.6. Hourly precipitation accumulation at Llyn Efyrnwy
        throughout 1998 illustrating the "missing data"
        problem ................................................ 74
   3.7. Hourly precipitation accumulation at Llyn Efyrnwy
        throughout 1998 with the "missing data" values
        removed by gnuplot ..................................... 75
   4.1. Part of the Taff Ely wind farm, South Wales, UK ........ 80
   4.2. Location of onshore and offshore wind farms
        operating in Wales, UK in 2006 ......................... 81
   4.3. Extract from the file wind981e.dat (first 25 records
        and first 10 fields only) .............................. 84
   4.4. gawk's main pattern-action and end blocks .............. 88
   4.5. gawk's if construct .................................... 90
   4.6. Absolute frequency distribution of the hourly mean
        wind speed at Llyn Efyrnwy ............................. 95
   4.7. Visualization of the absolute frequency distribution
        of the hourly mean wind speed at Llyn Efyrnwy in
        1998 ................................................... 95
   4.8. gawk's if else construct ............................... 96
   4.9. Relative frequency distribution of the hourly mean
        wind speed at Llyn Efyrnwy throughout 1998 ............. 99
   4.10.Visualization of the relative frequency distribution
        of hourly mean wind speed at LlynEfyrnwy throughout
        1998 ................................................... 99
   4.11.Relative frequency distributions of hourly mean wind
        speed at Llyn Efyrnwy for 1998 and the period 1994
        to 2000, inclusive .................................... 100
   4.12.Weibull PDFs for various values of the shape
        parameter (k) and a fixed value of the scale
        parameter (c = 1) ..................................... 101
   4.13.Part of the output from the gnuplot function-fitting
        procedure ............................................. 103
   4.14.Relative frequency distribution of hourly mean wind
        speed at Llyn Efyrnwy in 1998 and the Weibull PDF
        fitted to these data (k &asump; 1.536; с &asump;
        5.295) ................................................ 104
   4.15.Theoretical relationship between wind power and
        wind speed ............................................ 107
   4.16.Partial contents of the file wind981 v.pwr (first
        12 records) ........................................... 110
   4.17.Time series of the simulated power output from 
        a small WECS at Llyn Efyrnwy .......................... 111
   5.1. Partial contents of the file radt981e.dat (first 25
        records) .............................................. 115
   5.2. Direct and diffuse solar irradiance ................... 116
   5.3. First five lines of the output file, radt981e.out,
        produced using Program 5.1 ............................ 117
   5.4. Hourly variation in total solar irradiance at Llyn
        Efyrnwy throughout 1998 ............................... 118
   5.5. Diurnal variation in total solar irradiance at Llyn
        Efyrnwy on June 21, 1998 .............................. 119
   5.6. Impact of cloud cover on incident solar radiation,
        (i) Attenuation of the direct solar beam; (ii)
        reflection from clouds over adjacent terrain .......... 120
   5.7. Part of the electromagnetic spectrum, showing the 
        major wavelength regions, including an expanded
        representation of the visible spectrum ................ 121
   5.8. Spectral distribution of the radiant energy emitted
        by a blackbody radiator at 5800 К (e.g., the sun)
        in MW·m-2μm-1 .......................................... 122
   5.9. Solar spectral irradiance at the top of the
        atmosphere, assuming that the sun behaves as
        a blackbody radiator at 5800 К ........................ 124
   5.10.Reference solar spectral irradiance at the top of
        the atmosphere (solid line) and at sea level
        (dashed line) for a 1.5 air mass (AMI.5)
        atmospheric path length ............................... 125
   5.11.Scattering, absorption and transmission of solar
        radiation on its passage down through Earth's
        atmosphere ............................................ 125
   5.12.Gaseous transmission through Earth's atmosphere
        as a function of wavelength ........................... 126
   5.13.Solar zenith angle, Ψ, with respect to a flat
        horizontal surface .................................... 127
   5.14.Variation in the solar declination angle at four
        times of the year: (a) March 21 (δ = 0°), (b) June
        21 (δ = + 23.4°), (c) September 21 (δ = 0°) and (d)
        December 21 (δ = -23.4°) .............................. 128
   5.15.Variation in the solar declination angle, δ, as
        a function of the day ofyear, Do Y .................... 129
   5.16.Solar hour angle, θ, as though viewing Earth
        vertically downward from a point directly above
        the North Pole ........................................ 130
   5.17.gawk's begin and main pattern-action blocks ........... 132
   5.18.A for loop designed to perform a set of instructions
        contained in the body 365 times.The value of the
        variable doy increases by 1 each time, from 1 
        to 365 ................................................ 136
   5.19.Simulated variation in the total, direct and
        diffuse solar irradiance as a function of the day
        of year (DoY) ......................................... 138
   5.20.Comparison between observed (vertical impulses)
        and simulated (solid line) total solar irradiance
        as a function of the time of year ..................... 139
   6.1. Earth's shortwave radiation budget, showing
        the approximate percentages of the incident solar
        radiation that are (a) reflected by the atmosphere,
        (b) absorbed by the atmosphere, (c) reflected by
        clouds, (d) absorbed by clouds, (e) reflected by 
        the land and ocean surface and (f) absorbed by
        the land and ocean surface ............................ 144
   6.2. Earth's longwave radiation budget, showing the
        approximate percentages of longwave radiation
        emission from the surface that are (a) absorbed
        by atmospheric gases or (b) escape to space, (c)
        the net emission by atmospheric gases, (d) the
        sensible heat flux from the surface, (e) the net
        emission by clouds and (f) the latent heat flux
        from the surface ...................................... 145
   6.3. Typical spectral reflectance curves for vegetation
        (solid line) and soil (dashed line) in the range
        0.5 μm (blue/green) to 1.05μm (near-infrared) ......... 145
   6.4. Upward-looking hemispherical photograph taken from 
        within a deciduous tree canopy, giving an indication
        of the horizontal and vertical distribution of light
        within the canopy ..................................... 146
   6.5. Reflection from a soil surface ........................ 149
   6.6. Reflection from a layer of leaves ..................... 150
   6.7. Reflection from a mixed soil and leaf surface ......... 151
   6.8. Photograph of a sugar beet crop, showing the 
        mixture of leaves (dark areas) and soil (light
        areas) visible when the canopy is viewed vertically
        downward .............................................. 152
   6.9. Output from a simple light-interaction model for
        a surface comprising a mixture of soil and leaves
        (Program 6.1) ......................................... 156
   6.10.Expected variation in the spectral reflectance of
        a simple plant canopy at red and NIR wavelengths
        as a function of vegetation amount, LAI ............... 156
   6.11.Two-layer model of light interaction with a plant
        canopy ................................................ 157
   6.12.Spectral reflectance of a plant canopy as
        a function of the fractional cover of leaves based
        on the two-layer light interaction model given in
        Program 6.2 ........................................... 162
   6.13.Fifth-order multiple scattering in a two-layer
        model of light interaction ............................ 163
   6.14.Spectral reflectance of a plant canopy as
        a function of the fractional cover of leaves based
        on the two-layer model including fifth-order
        scattering ............................................ 165
   6.15.Schematic representation of the various pathways
        (i-vii) that incident solar radiation can take
        through a three-layer model of a plant canopy ......... 166
   6.16.Spectral reflectance of a mixed soil and vegetation
        canopy as a function of LAI, based on the three-
        layer model given in Program .......................... 171
   7.1. Multiple scattering of incident solar radiation in
        a two-layer plant canopy .............................. 175
   7.2. Interaction of a photon stream with a multiple leaf-
        layer canopy (time step 0) ............................ 179
   7.3. Interaction of a photon stream with a multiple leaf-
        layer canopy at time steps 1 (top), 2 (middle) and 3
        (bottom) .............................................. 180
   7.4. Schematic representation of a plant canopy
        comprising multiple plane-parallel leaf layers
        (z - 1, z, and z + 1) and a soil substrate (z') ....... 181
   7.5. Contributions to flux traveling upward from leaf-
        layer z in a simple, plane-parallel, plant canopy ..... 182
   7.6. Contributions to flux traveling downward from leaf-
        layer z in a simple, plane-parallel, plant canopy ..... 182
   7.7. Contribution to flux traveling upward from the soil
        substrate (z') in a simple, plane-parallel, plant
        canopy ................................................ 183
   7.8. Representation of the array 1_Up ...................... 184
   7.9. Two-stream model of radiation transport through
        a multiple leaf-layer model of a vegetation canopy
        (where layers=2; see text for explanation) ............ 185
   7.10.Flow-chart representation of the two nested for
       loops used in iterate.awk (Program 7.2) ................ 187
   7.11.Relationship between LAI and canopy spectral
        reflectance at red and NIR wavelengths predicted
        by the numerical solution to the multiple leaf-
        layer model (iterate.awk; Program 7.2) ................ 189
   7.12.Estimated spectral reflectance of a 10 leaf-layer
        plant canopy at near-infrared wavelengths as
        a function of the number of model iterations .......... 193
   7.13.Flow-chart representation of the general structure
        of a do while loop .................................... 195
   7.14.Attenuation of incident solar radiation as
        a function of the distance traversed through
        a homogeneous turbid medium, according to Bouguer's
        Law for various values of the attenuation
        coefficient, к ........................................ 197
   7.8. Environmental Modeling: A Practical Introduction
   7.15.Attenuation of incident solar radiation at red
        wavelengths as a function of the number of leaf-
        layers traversed down from the top of the canopy ...... 200
   7.16.Results reported by gnuplot when fitting the Bouguer
        Law function to the data in the file bouguer.red ...... 201
   7.17.Attenuation of incident solar radiation at red
        wavelengths as a function of the number of leaf-
        layers traversed downward into a multi-layer plant
        canopy (points) and the negative exponential
        function (Bouguer's Law) fitted to these data
        (dashed lines) ........................................ 202
   8.1. Factors leading to a change in the size of
        a population .......................................... 206
   8.2. Population growth predicted by a discrete density-
        independent model based on three separate rates of
        growth (λ = 1.05 λ = 1.06 and λ = 1.07) and a
        common initial population (N0 = 10) ................... 211
   8.3. Population decline predicted by a discrete,
        density-independent model based on three separate
        rates of growth (λ = 0.95, λ = 0.90 and λ = 0.85)
        and a common initial population (N0 = 100) ............ 212
   8.4. Discrete population growth curves from Figure 8.2
        plotted on a semi-logarithmic scale ................... 213
   8.5. Discrete population growth curves from Figure 8.3
        plotted on a semi-logarithmic scale ................... 213
   8.6. Average rate of population growth measured between
        two census points, A and B, expressed as the slope
        of the secant line AB ................................. 214
   8.7. Effect of reducing Δt on the representation of
        the continuous population growth curve, N(t) .......... 215
   8.8. Results from the continuous model of density-
        independent population growth (Program 8.2;
        continue.awk) for N0 = 10 and r = 0.05, r = 0.06 
        and r = 0.07 .......................................... 218
   8.9. Output from the continuous logistic model of
        population growth (Program 8.3; cntlogst.awk)
        for N(0) = 10, К = 1000 and various values of r ....... 222
   8.10.Relationship between population size (N) and
        population growth (dN/dt) in the continuous
        density-dependent model of population growth for
        N(0) = 10, K = 1000 and r = 0.05 ...................... 223
   8.11.Output from the discrete logistic model of
        population growth (Program 8.4; dsclogst.awk)
        for N0 = 10, К = 1000 and three different values
        of r (0.05, 0.06 and 0.07) ............................ 225
   8.12.Variation in population size as predicted by
        the discrete logistic growth model as a function
        of r for N0 = 2 and К = 1000 .......................... 226
   8.13."Bifurcation diagram" showing the population sizes
        predicted by the discrete version of the density-
        dependent population growth model as a function
        of the intrinsic rate of increase, r .................. 227
   8.14.Enlarged section of the "bifurcation diagram"
        presented in Figure 8.13 showing the fine structure
        present ............................................... 229
   8.15.Effect of a small difference in N0, N0 = 99 (·) and
        N0 = 102 (o), on the population dynamics of
        the discrete logistic model for r = 3.0 and 
        Ј = 500 ............................................... 229
   8.16.Diagrammatic representation of Euler's method of
        numerical in tegration used to estimate Nt+1 based
        on Nt and dN where Δt = 1. The solid gray line
                  dt
        represents the underlying continuous function
        N(t) .................................................. 230
   8.17.Euler's method of numerical integration used
        to estimate Nt+1 based on Nt and dN, where Δt = 0.5.
                                        dt
        The gray dot is the value of Nt+1 estimated
        using Δt = 1 .......................................... 231
   8.18.Analytical and numerical (Euler's method) solutions
        to the continuous logistic model of population
        growth for r = 0.5, N0 = 10 and Δt = 1,0.5 and 0.1 .... 234
   8.19.Schematic of the mid-point method of numerical
        integration ........................................... 236
   8.20.Results of the analytical (solid line) and fourth-
        order Runge-Kutta numerical (dots) solutions to
        the continuous logistic model of population growth
        for r = 0.05, N(0) = 10 and dt = 0.1 .................. 238
   8.21.Example data file, paramsl .dat, containing the set
        of parameter values that are required as input to
        Program 8.7, compete.awk .............................. 240
   8.22.Sustained coexistence: inter-specific competition
        modeled using Program 8.7, compete.awk, for N1 = 10
        and N2 = 20 initially, r1 = 0.5, r2 = 0.75, a = 0.7,
        β = 0.6, K1 = 1000 and K2 = 750 ........................ 242
   8.23.Demise of one species: inter-specific competition
        modeled using Program 8.7, compete.awk, for N1 = 10
        and N2 = 20 initially, and r1 = 0.5, r2 = 0.75,
        α = 0.5, β = 0.8, K1 = 1000 and K2 = 750 ............... 243
   8.24.Second example data file, params2.dat, containing
        the set of pa rameter values that are required as
        input to Program 8.7, compete.awk ..................... 244
   8.25.Output from the Lotka-Volterra predator-prey
        equations (solid line = prey species; dashed line =
        predator species) ..................................... 247
   8.26.Phase-plane diagram showing the hysteresis loop
        between the sizes of the predator and prey
        populations predicted by the Lotka-Volterra model
        (Program 8.8) ......................................... 248
   9.1. Diagrammatic representation of the Daisy world
        model ................................................. 255
   9.2. Parabolic relationship between daisy growth rate
        and local temperature ................................. 257
   9.3. First 15 rinesoftheflledaisyl.dat ..................... 262
   9.4. Average global temperature of Daisyworld as
        a function of time, assuming a constant solar
        luminosity (L = 1.0) .................................. 263
   9.5. Fractional area of Daisyworld covered by black
        daisies and white daisies as a function of time,
        assuming a constant solar luminosity (L = 1.0) ........ 264
   9.6. Global average temperature versus time for L = 0.8,
        0.9, 1.0, 1.1 and 1.2 ................................. 265
   9.7. Global average temperature of Daisyworld, with and
        without biota, as a function of solar luminosity ...... 268
   9.8. Solar luminosity versus the fractional area of
        Daisyworld covered by black (solid line) and white
        (dashed line) daisies ................................. 269
   9.9. Variation in the global average temperature of
        Daisyworld as a function of solar luminosity.
        Comparison of results obtained using the two-
        species and three-species versions of the model ....... 273
   9.10.Fractional area of the planet surface covered by
        black (solid line), gray (long-dash line) and white
        (short-dash line) daisies as a function of relative
        solar luminosity ...................................... 273
   9.11.Schematic representation of a user-defined function
        in gawk ............................................... 276
   9.12.Sensitivity analysis of the three-species
        Daisyworld model, daisy4.awk, showing variation
        in the globally averaged temperature of the planet
        as a function of the albedo of the black daisies
        (0.10 ≤ Аblack ≤ 0.45) ................................. 284
   9.13.Sensitivity analysis of the three-species
        Daisyworld model, daisy4.awk, showing variation
        in the globally averaged temperature of the planet
        as a function of the albedo of the white daisies
        (0.55 ≤ Awhite ≤ 0.90) ................................. 284
   9.14.Sensitivity analysis of the three-species
        Daisyworld model, daisy 4.awk, showing variation
        in the fractional area of the planet covered by
        black daisies as a function of the albedo of the
        black daisies (0.10 ≤ Ablack ≤ 0.45) ................... 285
   9.15.Sensitivity analysis of the three-species
        Daisyworld model, daisy4.awk, showing variation
        in the fractional area of the planet covered by
        white daisies as a function of the albedo of the 
        black daisies (0.10 ≤ Ablack ≤ 0.45) ................... 285
   10.1.Planimetric visualization of the terrain
        elevation at Llyn Efyrnwy ............................. 291
   10.2.Graphical representation of a 2D array, data. The
        shaded cell is data [2,3] ............................. 292
   10.3.Relative indexing used to calculate the local
        gradient and aspect of a given cell, elevation
        [E,N], in an array containing digital elevation
        data, where e and N are the Easting and Northing,
        respectively, of the cell and where Δ is the
        cell size ............................................. 294
   10.4.Relationship between the size of the data array
        given as input to Program 10.2, gradasp.awk, (gray
        and white cells combined) and the output data
        arrays that it produces (white cells only) ............ 298
   10.5.Planimetric visualization of the terrain gradient
        (arc degrees) at Llyn Efyrnwy ......................... 299
   10.6.Planimetric visualization of the terrain aspect
        (arc degrees relative to true north) at Llyn
        Efyrnwy ............................................... 300
   10.7.Planimetric visualization of the direct solar
        irradiance for each cell in the Llyn Efyrnwy DEM
        at solar noon on Do Y = 172 (June 21) ................. 307
   10.8.Planimetric visualization of the diffuse solar
        irradiance for each cell in the Llyn Efyrnwy DEM at
        solar noon on Do Y = 172 (June 21) .................... 308
   10.9.Planimetric visualization of the total (global)
        solar irradiance for each cell in the Llyn Efyrnwy
        DEM at solar noon on Do Y = 172 (June 21) ............. 309
   10.10.Potential directions in which water may flow
        across a DEM in the D8 or "eight-point pour"
        algorithm ............................................. 310
   10.11.Example of a small DEM array showing the LDD
        vectors derived using the D8 ("eight-point pour")
        algorithm ............................................. 313
   10.12.LDD vectors derived from the Llyn Efyrnwy DEM
        using the D8 ("eight-point pour") algorithm ........... 314
   10.13.LDD vectors derived from the Llyn Efyrnwy DEM
        using the D8 ("eight-point pour") algorithm with
        OS stream network superimposed ........................ 314
   10.14.Extract from the data file efyrnwy.arr produced
        by Program 10.5, d8arrows.awk (first 25
        records) .............................................. 317
   10.15.D8 LDD vectors superimposed onto a 3D visualization
        of the Llyn Efyrnwy DEM ............................... 318

   A.1. Graphical representation of some files and
        directories on the CD-ROM, illustrating the full
        path to the file rain981e.dat under Microsoft
        Windows (d:/chapter3/rain981e.dat) .................... 322
   A.2. Graphical representation of some files and
        directories on the CD-ROM, illustrating the full
        path to the file rain981e.dat under GNU/Linux 
        (/mnt/cdrom/chapter3/rain981e.dat) .................... 323
   A.3. The gnuplot download page viewed in a standard web
        browser (ftp://ftp.gnuplot.info/pub/gnuplot/) ......... 324
   A.4. Installing gnuplot on Microsoft Windows XP.See text
        for details ........................................... 325
   A.5. Folder containing the gnuplot executable .............. 326
   A.6. GUI version of gnuplot for Microsoft Windows .......... 327
   A.7. Command-line interface for gnuplot running under
        GNU/Linux ............................................. 327
   A.8. Some of the steps involved in installing gawk on
        Microsoft Windows ..................................... 330
   A.9. Further steps involved in installing gawk on
        Microsoft Windows ..................................... 331
   A.10.Instructing Microsoft Windows where to find gawk on
        the system ............................................ 332
   A.11.Running gawk under Microsoft Windows .................. 332
   A.12.gawk running in a GNU/Linux console ................... 333
   E.l. Output from Exercise 3.3 .............................. 351
   E.2. Output from Exercise 4.1 .............................. 353
   E.3. Output from Exercise 4.3 .............................. 355
   E.4. Output from Exercise 5.1 .............................. 356
   E.5. Output from Exercise 5.2 .............................. 358
   E.6. Output from Exercise 6.2 .............................. 360
   E.7. Ouptut from Exercise 8.1 .............................. 362
   E.8. First plot from Exercise 8.2 .......................... 363
   E.9. Second plot from Exercise 8.2 ......................... 364
   E.10.Output from Exercise 8.3 .............................. 365
   E.ll.First plot from Exercise 9.1 .......................... 366
   E.12.Second plot from Exercise 9.1 ......................... 366
   E.13.First plot from Exercise 9.2 .......................... 369
   E.14.Second plot from Exercise 9.2 ......................... 369
   E.15.First plot from Exercise 9.3 .......................... 371
   E.16.Second plot from Exercise 9.3 ......................... 371
   E.17.Third plot from Exercise 9.3 .......................... 372
   E.18.Output from Exercise 9.4 .............................. 375
   E.19.Output from Exercise 10.1 ............................. 376

List of Tables

   1.1. Four main phases of systems analysis .................... 3
   1.2. Important definitions in environmental modeling ......... 4
   1.3. Selection of tools suitable for implementing
        computer-based environmental models .................... 15
   1.4. Some of the bird species found in the area
        surrounding Llyn Efyrnwy ............................... 21
   2.1. Examples of "open source" software for scientific
        data visualization ..................................... 28
   2.2. Selected options of the plot command in gnuplot ........ 34
   2.3. Selected data style options of the plot command in
        gnuplot ................................................ 35
   2.4. Selected time and date format specifiers in gnuplot .... 39
   2.5. Selected command-line options to control the
        appearance of data series in gnuplot ................... 42
   2.6. Selected output file formats supported by gnuplot ...... 56
   3.1. Selected properties of the gawk programming language ... 62
   3.2. Interpretationofthedatafieldsinthefilerain981e.dat ..... 63
   3.3. Selected mathematical operators available in gawk ...... 66
   3.4. Numerical comparison operators in gawk ................. 69
   3.5. Selected printf format control specifiers .............. 70
   3.6. Selected printf format modifiers ....................... 71
   3.7. Logical or Boolean operators in gawk ................... 76
   4.1. Location and characteristics of wind farms operating
        in Wales, UK in 2006 ................................... 82
   4.2. Explanation of the data fields in wind981e.dat ......... 85
   4.3. Operation of lines l-5 of Program 4.1 applied to 
        wind981e.dat ........................................... 87
   4.4. gawk's arithmetic assignment operators ................. 91
   4.5. gawk's increment and decrement operators ............... 91
   4.6. Factors affecting the power output of a WECS .......... 106
   5.1. Explanation of the data fields in radt981v.dat ........ 116
   5.2. Symbols used in the mathematical model (Equations
        5.7 through 5.14) and variables used in the 
        computational model (Program 5.2) of solar
        irradiance at Llyn Efyrnwy ............................ 133
   6.1. Explanation of the pathways that radiation can
        traverse through the three-layer model of a plant
        canopy presented in Figure 6.15 and the
        corresponding terms in Equation 6.15 .................. 167
   7.1. Spectral reflectance of a simple vegetation canopy
        with either a soil or a snow substrate derived
        using alternative formulations and implementations
        of a two-layer model .................................. 178
   7.2. Output from iterate.awk at red and MR wavelengths ..... 189
   7.3. Output from iterate2.awk (Program 7.3) at red and
        NIR wavelengths, showing the predicted canopy
        spectral reflectance as a function of the number of
        iterations ............................................ 192
   7.4. Ouptut from iterate3.awk (Program 7.4) at red and
        NIR wavelengths, showing the number of iterations
        performed and the predicted canopy spectral
        reflectance, RС ....................................... 196
   8.1. Approximate threshold values for different types
        of behavior in the discrete logistic population
        growth model .......................................... 228
   8.2. Difference at t = 10 between the analytical
        solution to the continuous logistic model for r =
        0.5, К = 1000 and N0 = 10 and the numerical
        solution based on Euler's method for different
        values of Δt .......................................... 235
   9.1. Multiple Gaia hypotheses .............................. 252
   9.2. List of parameters and variables in the Daisy world
        model and their implementation in the corresponding
        gawk code (Program 9.1) ............................... 259

   D.l. ISO 8601:2004 date and time notations ................. 343
   D.2. SI Base Units ......................................... 344
   D.3. SI derived and supplementary units .................... 345
   D.4. SI prefixes ........................................... 346

List of Programs

   1.1. introduction, awk ...................................... 26
   3.1. selcols.awk ............................................ 67
   3.2. selcols2.awk ........................................... 68
   3.3. selcols3.awk ........................................... 70
   3.4. selcols4.awk ........................................... 72
   3.5. selcols5.awk ........................................... 76
   4.1. meanwspd.awk ........................................... 86
   4.2. meanmaxw.awk ........................................... 89
   4.3. windfreq.awk ........................................... 93
   4.4. windfrq2.awk ........................................... 97
   4.5. wpower.awk ............................................ 108
   5.1. selradt.awk ........................................... 117
   5.2. solarrad.awk .......................................... 131
   5.3. solarrd2.awk .......................................... 137
   6.1. mixture.awk ........................................... 154
   6.2. twolayer.awk .......................................... 160
   6.3. twolayr2.awk .......................................... 164
   6.4. 31ayers.awk ........................................... 169
   7.1. analytic.awk .......................................... 177
   7.2. iterate.awk ........................................... 186
   7.3. iterate2.awk .......................................... 191
   7.4. iterate3.awk .......................................... 194
   7.5. bouguer.awk ........................................... 199
   8.1. discrete.awk .......................................... 209
   8.2. continue.awk .......................................... 217
   8.3. cntlogst.awk .......................................... 221
   8.4. dsclogst.awk .......................................... 225
   8.5. euler.awk ............................................. 233
   8.6. rk4.awk ............................................... 237
   8.7. compete.awk ........................................... 241
   8.8. predprey.awk .......................................... 246
   9.1. daisy l.awk ........................................... 260
   9.2. daisy2.awk ............................................ 266
   9.3. daisy3.awk ............................................ 271
   9.4. daisy4.awk ............................................ 277
   9.5. daisyvar.awk .......................................... 280
   9.6. daisy5.awk ............................................ 281
   9.7. daisyfns.awk .......................................... 282
   10.1. readarr.awk .......................................... 293
   10.2. gradasp.awk .......................................... 295
   10.3. demirrad.awk ......................................... 302
   10.4. d81dd.awk ............................................ 311
   10.5. d8arrows.awk ......................................... 316


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:10 2019. Размер: 57,767 bytes.
Посещение N 2450 c 25.08.2009