Advances in semantic media adaptation and personalization; 2 (Boca Raton, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAdvances in semantic media adaptation and personalization. Vol.2 / ed. by Angelides M.C., Mylonas P., Wallace M. - Boca Raton: CRC Press, 2009. - xiii, 436 p.: ill. - Incl. bibl. ref. - Ind.: p.425-436. - ISBN 978-1-4200-7664-6
 

Оглавление / Contents
 
Preface ........................................................ xv
Contributors ................................................. xvii

1. Multimedia Metadata 2.0: Challenges of Collaborative
   Content Modeling ............................................. 1
      DAMON DAYLAMANIZAD AND HARRY AGIUS
     
1.1. Introduction ............................................... 1
1.2. Challenges of MM 2.0 ....................................... 3
     1.2.1. Standardization ..................................... 3
     1.2.2. Folksonomies ........................................ 5
     1.2.3. Awareness ........................................... 7
     1.2.4. Community ........................................... 9
1.3. Suitability of MPEG-7 in Meeting the Challenges ........... 10
     1.3.1. Meeting Standardization Challenges ................. 10
     1.3.2. Meeting Folksonomic Challenges ..................... 12
     1.3.3. Meeting Awareness Challenges ....................... 15
     1.3.4. Meeting Community Challenges ....................... 16
1.4. Conclusion ................................................ 16
Acknowledgment ................................................. 17
References ..................................................... 17

2. Research Directions toward User-Centric Multimedia .......... 21
      BERNHARD REITERER, JANINE LACHNER, ANDREAS LORENZ,
      ANDREAS ZIMMERMANN, AND HERMANN HELLWAGNER

2.1. Introduction .............................................. 21
2.2. Vision of User-Centric Multimedia ......................... 22
2.3. Personalization and Context Management .................... 25
     2.3.1. Adaptation Targets ................................. 26
     2.3.2. Properties of Users and Context .................... 27
            2.3.2.1. Interindividual Differences and
                     Intraindividual Differences ............... 27
            2.3.2.2. Environmental Differences ................. 28
     2.3.3. Approaches to User Modeling ........................ 29
            2.3.3.1. Monolithic User Modeling .................. 30
            2.3.3.2. User-Modeling Servers ..................... 30
            2.3.3.3. Modularization of User Models ............. 31
            2.3.3.4. Ubiquitous User Modeling .................. 31
     2.3.4. Approaches to Context Management ................... 32
2.4. Content Adaptation ........................................ 33
     2.4.1. Concepts for Adaptation ............................ 33
     2.4.2. Utility-Based Multimedia Adaptation ................ 35
     2.4.3. Knowledge-Based Media Adaptation ................... 35
2.5. Implications .............................................. 36
     2.5.1. User Modeling and Context Management ............... 36
     2.5.2. Advanced Interfaces for Converging Devices ......... 37
     2.5.3. Extending Multimedia Adaptation Decision Taking .... 38
2.6. Conclusion ................................................ 39
Acknowledgment ................................................. 40
References ..................................................... 41

3. User-Centered Adaptation of User Interfaces for
   Heterogeneous Environments .................................. 43
      JAN MESKENS, MIEKE HAESEN, KRIS LUYTEN, AND KARIN
      CONINX

3.1. Introduction .............................................. 43
3.2. MuiCSer Process Framework ................................. 45
3.3. Models .................................................... 47
     3.3.1. Presentation Model ................................. 48
            3.3.1.1. Form-Based UIDLs .......................... 49
            3.3.1.2. High-Level UIDLs .......................... 49
     3.3.2. User Model ......................................... 50
     3.3.3. Device Model ....................................... 51
3.4. Designing for Transformation .............................. 51
     3.4.1. Tools .............................................. 52
     3.4.2. Gummy .............................................. 54
3.5. Runtime UI Adaptation ..................................... 56
     3.5.1. Adaptation Process ................................. 56
     3.5.2. Examples ........................................... 58
3.6. Discussion ................................................ 59
Acknowledgments ................................................ 61
References ..................................................... 62

4. Video Adaptation Based on Content Characteristics and
   Hardware Capabilities ....................................... 67
      OZGUR DENIZ ÖNÜR AND AYDIN A. ALATAN

4.1. Introduction .............................................. 67
4.2. Utility-Based Video Adaptation ............................ 70
     4.2.1. Video Content Characteristics ...................... 71
     4.2.2. Hardware Capabilities .............................. 72
4.3. Subjective Video Evaluation Tests ......................... 73
     4.3.1. Test Methodology ................................... 73
            4.3.1.1. Training Phase ............................ 74
            4.3.1.2. Stabilization Phase ....................... 74
            4.3.1.3. Testing Phase ............................. 74
            4.3.1.4. Comparison of DSIS and DSCQS Methods ...... 74
     4.3.2. Subjective Video Evaluation Experiments ............ 75
            4.3.2.1. High-End PDA Tests ........................ 75
            4.3.2.2. Mobile Phone Tests ........................ 80
     4.3.3. Predicting Satisfaction Models for Unknown
            Devices ............................................ 84
            4.3.3.1. Prediction for High-End PDAs .............. 86
            4.3.3.2. Prediction for Mobile Phones .............. 88
     4.3.4. Obtaining Optimal User Satisfaction ................ 88
4.4. Conclusions ............................................... 91
     References ................................................ 93

5. Toward Next-Generation In-Flight Entertainment Systems:
   A Survey of the State of the Art and Possible Extensions .... 95
      HAO LIU, BEN SALEM, AND MATTHIAS RAUTERBERG

5.1. Introduction .............................................. 95
5.2. Overview of the Current In-Flight Entertainment
     Systems ................................................... 96
     5.2.1. Currently Installed In-Flight Entertainment
     Systems ................................................... 97
     5.2.2. Commercially Available In-Flight Entertainment
     Systems ................................................... 99
     5.2.3. Discussions and Conclusions ........................ 99
5.3. Extending the Capabilities of In-Flight Entertainment
     Systems to Increase Passengers' Comfort Actively and
     Intelligently ............................................ 101
     5.3.1. Context-Adaptive Systems .......................... 101
     5.3.2. User Profiling .................................... 102
     5.3.3. Methods of Using Entertainment Services for
            Stress Reduction .................................. 104
            5.3.3.1. Music .................................... 104
            5.3.3.2. Games .................................... 104
     5.3.4. Cybernetics Control Systems ....................... 105
     5.3.5. A New Framework for Next-Generation In-Flight
            Entertainment Systems ............................. 106
5.4. Conclusions .............................................. 108
Acknowledgment ................................................ 108
References .................................................... 109

6. Toward an Adaptive Video Retrieval System .................. 113
      FRANK HOPFGARTNER AND JOEMON M. JOSE

6.1. Introduction ............................................. 113
6.2. Background ............................................... 115
     6.2.1. Interactive Video Retrieval Systems ............... 116
     6.2.2. Personalization ................................... 117
     6.2.3. Evolving User Interest ............................ 118
     6.2.4. Relevance Ranking ................................. 119
     6.2.5. Evaluation Framework .............................. 119
6.3. Research Framework ....................................... 120
6.4. NewsBoy Architecture ..................................... 122
     6.4.1. Data Collection ................................... 123
     6.4.2. Desktop PC Interface .............................. 126
     6.4.3. Profile ........................................... 128
            6.4.3.1. Capturing Evolving Interest .............. 129
            6.4.3.2. Capturing Multiple Interests ............. 131
6.5. Discussion ............................................... 132
Acknowledgment ................................................ 132
References .................................................... 133

7. On Using Information Retrieval Techniques for Semantic
   Media Adaptation ........................................... 137
      SEBASTIEN LABORIE AND ANTOINE ZIMMERMANN

7.1. Introduction ............................................. 137
7.2. Related Work ............................................. 138
     7.2.1. Media Adaptation .................................. 138
     7.2.2. Semantic Information Retrieval and Description .... 139
7.3. Motivating Examples ...................................... 140
7.4. A Framework for Media Adaptation ......................... 142
     7.4.1. Description Association (a) ....................... 144
     7.4.2. Description Aggregation (b) ....................... 144
     7.4.3. Description Similarity (c) ........................ 145
     7.4.4. Description Selection (d) ......................... 145
     7.4.5. Adaptation Component .............................. 146
7.5. Media Adaptation by Semantic Web Retrieval ............... 147
     7.5.1. Scenario .......................................... 148
     7.5.2. Module (a) ........................................ 149
     7.5.3. Module (b) ........................................ 150
     7.5.4. Module (c) ........................................ 151
     7.5.5. Module (d) ........................................ 152
7.6. Discussion ............................................... 152
7.7. Conclusion ............................................... 153
References .................................................... 154

8. Interactive Video Browsing of H 264 Content Based on
   Just-in-Time Analysis ...................................... 159
      KLAUS SCHÖFFMANN AND LASZLO BÖSZÖRMENYI

8.1. Introduction ............................................. 159
8.2. Related Work ............................................. 160
8.3. System Architecture ...................................... 162
     8.3.1. Overview .......................................... 162
     8.3.2. Video Segmentation ................................ 163
     8.3.3. Unit Classification ............................... 163
     8.3.4. Visualization and Interactivity ................... 164
8.4. Interactive User Interface ............................... 164
     8.4.1. Chronological Shot Navigation ..................... 164
     8.4.2. Feature-Based Shot Navigation ..................... 165
     8.4.3. Hierarchical Navigation ........................... 166
8.5. Feature Extraction from H.264 ............................ 167
     8.5.1. Macroblock Type Distribution ...................... 168
     8.5.2. Macroblock Partitioning Scheme .................... 168
     8.5.3. Intra prediction Mode Histogram ................... 170
     8.5.4. Dominant Motion ................................... 170
     8.5.5. Shot Length ....................................... 171
     8.5.6. Color Information ................................. 171
8.6. Experimental Results ..................................... 171
8.7. User Study ............................................... 173
     8.7.1. Test Setup and Environment ........................ 173
     8.7.2. Evaluation ........................................ 173
     8.7.3. Questionnaire and SUS ............................. 176
8.8. Conclusions .............................................. 177
References .................................................... 179

9. Personalized Faceted Navigation in Semantically Enriched
   Information Spaces ......................................... 181
      MICHAL TVAROZEK AND MARIA BIELIKOVA

9.1. Introduction1 ............................................ 181
9.2. Related Work ............................................. 183
     9.2.1. Keyword-Based Search .............................. 183
     9.2.2. Content-Based Search .............................. 183
     9.2.3. View-Based Search ................................. 184
9.3. Personalized Faceted Navigation Overview ................. 185
9.4. Model for Relevance Evaluation ........................... 187
9.5. Facet Recommendation ..................................... 190
     9.5.1. Facet and Restriction Personalization ............. 190
     9.5.2. Dynamic Facet Generation .......................... 191
9.6. Search Result Recommendations ............................ 192
9.7. Evaluation ............................................... 193
     9.7.1. Architecture and Implementation ................... 193
     9.7.2. Examples and Domains .............................. 195
            9.7.2.1. Information Overload Prevention .......... 195
            9.7.2.2. Orientation and Guidance Support ......... 196
            9.7.2.3. Query Refinement ......................... 196
            9.7.2.4. Social Navigation and Collaboration ...... 196
     9.7.3. Experiments and Discussion ........................ 197
9.8. Conclusions .............................................. 198
Acknowledgments ............................................... 199
References .................................................... 199

10.Personalized Audiovisual Content-Based Podcasting .......... 203
      ELENA SANCHEZ-NIELSEN AND FRANCISCO CHAVEZ-GUTIERREZ

10.1.Introduction ............................................. 203
10.2.State of the Art ......................................... 204
     10.2.1.Facing the Multimedia Content Domain .............. 204
     10.2.2.Content Delivery Distribution ..................... 205
     10.2.3.Podcast Publishing ................................ 206
     10.2.4.MPEG-7 ............................................ 207
     10.2.5.Semantic Description Tools ........................ 209
            10.2.5.1.Abstraction Model ........................ 209
            10.2.5.2.Semantic Relations ....................... 209
10.3.Motivating Scenario: Personalized Podcast Publishing
     for Parliamentary Web Sites .............................. 210
     10.3.1.Legislative Assembly Domain ....................... 210
     10.3.2.Need for Personalized Podcast Publishing .......... 211
10.4.Customized Podcast Information System .................... 212
     10.4.1.Description of Plenary Sessions Content ........... 212
     10.4.2.Metadata and Content Generation ................... 215
     10.4.3.Fragmentation ..................................... 219
     10.4.4.Customized Feeds Delivery ......................... 220
10.5.System Status ............................................ 221
10.6.Conclusions and Future Work .............................. 222
References .................................................... 223

11.Use of Similarity Detection Techniques for Adaptive News
   Content Delivery and User Profiling ........................ 225
      BILAL ZAKA, CHRISTIAN SAFRAN, AND FRANK KAPPE

11.1.Introduction ............................................. 225
11.2.Related Work ............................................. 227
11.3.Design of PINC ........................................... 229
     11.3.1.News Acquisition and Preprocessing ................ 229
     11.3.2.Personalization ................................... 231
     11.3.3.Aggregation ....................................... 233
     11.3.4.User Interfaces ................................... 233
            11.3.4.1.World Wide Web Access .................... 234
            11.3.4.2.Speech Interface ......................... 234
            11.3.4.3.E-Ink .................................... 235
            11.3.4.4.Video .................................... 236
11.4.System Architecture ...................................... 237
11.5.Prototype ................................................ 240
11.6.Summary and Future Work .................................. 241
Acknowledgments ............................................... 242
References .................................................... 243

12.Toward an Adaptive and Personalized Web Interaction Using
   Human Factors .............................................. 247
      PANAGIOTIS GERMANAKOS, NIKOS TSIANOS, ZACHARIAS
      LEKKAS, CONSTANTINOS MOURLAS, MARIO BELK, AND GEORGE
      SAMARAS

12.1.Introduction ............................................. 247
12.2.Theoretical Background ................................... 249
     12.2.1.Constructive Comparison of Adaptive Hypermedia
            and Web Personalization ........................... 249
     12.2.2.User Profile Fundamentals ......................... 250
     12.2.3.Comprehensive User Profile Used in the
            AdaptiveWeb System ................................ 250
            12.2.3.1.Traditional User Profile ................. 251
            12.2.3.2.User Perceptual Preference
                     Characteristics .......................... 251
     12.2.4.Relating the Comprehensive Profile with the
            Information Space: A High-Level Correlation
            Diagram ........................................... 253
12.3.Adaptive Web System's Architecture ....................... 255
12.4.Adaptation Process ....................................... 256
     12.4.1.User Profile Construction Process ................. 256
     12.4.2.Content Authoring and Mapping Process ............. 258
     12.4.3.Viewing the Adapted Content: The
            Adaptivelnteli Web Environment .................... 263
            12.4.3.1.e-Learning Environment ................... 264
            12.4.3.2.e-Commerce Environment ................... 264
12.5.Evaluating System Performance ............................ 267
12.6.Evaluation of the e-Learning Paradigm .................... 268
     12.6.1.Sampling and Procedure ............................ 268
     12.6.2.Results ........................................... 269
12.7.Evaluation of the e-Commerce Paradigm .................... 271
     12.7.1.Sampling and Procedure ............................ 271
     12.7.2.Implications for an e-Commerce Setting ............ 273
     12.7.3.Results ........................................... 273
12.8.Conclusions and Future Work .............................. 275
References .................................................... 278

13.Image-Based Synthesis for Human Facial Expressions ......... 283
      NIKOLAOS ERSOTELOS AND FENG DONG

13.1.Introduction ............................................. 283
     13.1.1.Aim and Objectives ................................ 284
13.2.Previous Work ............................................ 284
13.3.Existing Techniques and New Approach Implementations ..... 286
     13.3.1.Divide a Face into Areas .......................... 288
     13.3.2.Elimination of Geometrical Distortion ............. 288
     13.3.3.Illumination Transfer ............................. 289
     13.3.4.Facial Expression Database ........................ 289
     13.3.5.Copy Facial Area: Noise Reduction ................. 290
13.4.Results .................................................. 291
13.5.Discussions and Future Plans ............................. 293
13.6.Conclusion ............................................... 294
References .................................................... 295

14.Image Retrieval Using Particle Swarm Optimization .......... 297
      KRISHNA CHANDRAMOULI AND EBROUL IZQUIERDO

14.1.Introduction ............................................. 297
14.2.Particle Swarm Optimization .............................. 300
14.3.Related Work ............................................. 302
     14.3.1.Neural Network—Based Relevance Feedback ........... 302
     14.3.2.Support Vector Machine (SVM)-Based Relevance 
            Feedback .......................................... 303
14.4.Proposed Approach ........................................ 304
     14.4.1.Visual Search System .............................. 305
     14.4.2.Relevance Feedback System ......................... 307
14.5.Experimental Results ..................................... 309
     14.5.1.Feature Set ....................................... 309
     14.5.2.PSO Implementation ................................ 309
     14.5.3.Corel Dataset ..................................... 309
     14.5.4.Caltech Dataset ................................... 315
14.6.Conclusions and Future Work .............................. 316
Acknowledgment ................................................ 316
References .................................................... 317


15.Image Description Using Scale-Space Edge Pixel Directions
   Histogram .................................................. 321
      ANTONIO M.G. PINHEIRO

15.1.Introduction ............................................. 321
15.2.Scale-Space Edge Pixel Directions Histogram .............. 323
15.3.Image Classification Using Scale-Space Edge Pixel
     Directions Histogram ..................................... 326
     15.3.1.Image Comparison .................................. 326
     15.3.2.Classification Using the Nearest Class Mean ....... 329
     15.3.3.High-Level Annotation of Images ................... 331
15.4.Final Remarks and Future Work ............................ 338
     References ............................................... 339

16.Semantic Language for Description and Detection of Visual
   Events ..................................................... 341
      AHMED AZOUGH, ALEXANDRE DELTEIL, FABIEN DE MARCHI,
      AND MOHANDSAID HACID

16.1.Introduction ............................................. 341
16.2.Related Work ............................................. 343
     16.2.1.Semantic Description of Multimedia Resources ...... 343
     16.2.2.Detection of Events and High-Level Concepts in
     Videos ................................................... 344
16.3.Our Contribution ......................................... 345
16.4.Modeling Visual Events ................................... 346
     16.4.1.Video Semantic Structure .......................... 346
     16.4.2.Formal Model Language ............................. 346
            16.4.2.1.Fuzzy Conceptual Graphs .................. 347
            16.4.2.2.Temporal Finite State Machine ............ 348
     16.4.3.Hierarchical Description .......................... 348
16.5.High-Level Events Detection .............................. 350
     16.5.1.Detection Framework ............................... 350
            16.5.1.1.Model Editor ............................. 351
            16.5.1.2.Video Annotator .......................... 351
            16.5.1.3.Event Detector ........................... 352
     16.5.2.Detection Algorithms .............................. 352
            16.5.2.1.Model Occurrence ......................... 352
            16.5.2.2.Objectlnstances .......................... 353
            16.5.2.3.Matching ................................. 353
16.6.Video-Guided Monitoring of Behavior ...................... 354
     16.6.1.Monitoring Protocol Construction .................. 356
     16.6.2.Monitoring Behavior for Video Surveillance ........ 357
     16.6.3.Use Case: Car Theft ............................... 358
16.7.MPEG-7 Annotation Validation ............................. 359
16.8.Conclusion and Perspectives .............................. 362
References .................................................... 363

17.MPEG-7-Based Semantic Indexing of Film Heritage
   Audiovisual Content ........................................ 365
      YOLANDA COBOS, MARIA TERESA LINAZA, CRISTINA SARASUA,
      ANDER GARCIA, AND ISABEL TORRE

17.1.Introduction ............................................. 365
17.2.Related Work ............................................. 366
     17.2.1.Description of the MPEG-7 Standard ................ 366
     17.2.2.Annotation Tools Based on MPEG-7 .................. 368
     17.2.3.Projects Based on the MPEG-7 Standard ............. 370
     17.2.4.MPEG-7 and Cultural Heritage ...................... 371
17.3.Application Scenario: The CINeSPACE Project .............. 372
     17.3.1.Main Objectives of the Project .................... 372
     17.3.2.Architecture of the Content Management System ..... 373
     17.3.3.Performance of the Annotation and Retrieval
            CINeSPACE System .................................. 374
17.4.CINeSPACE and MPEG-7 ..................................... 375
     17.4.1.Motivation for Using MPEG-7 ....................... 375
     17.4.2.Requirements for the CINeSPACE Metadata ........... 376
     17.4.3.MPEG-7 Descriptors for CINeSPACE Metadata ......... 376
            17.4.3.1.Basic Elements ........................... 377
            17.4.3.2.User Preferences ......................... 378
            17.4.3.3.Visual Descriptors ....................... 378
            17.4.3.4.Semantic Features ........................ 378
            17.4.3.5.Camera Metadata .......................... 379
            17.4.3.6.Global Positioning Data .................. 379
17.5.CINeSPACE Annotation Tool ................................ 379
     17.5.1.Image Information Panel ........................... 380
     17.5.2.User Preferences Panel ............................ 386
     17.5.3.Semantics Panel ................................... 388
     17.5.4.Shape Panel and Visuals Panel ..................... 392
17.6.Results .................................................. 392
17.7.Conclusions and Future Work .............................. 394
References .................................................... 395

18.Automatic Feature Extraction to an MPEG-7 Content Model .... 399
      M.J. PARMAR AND M.С. ANGELIDES

18.1.Introduction ............................................. 399
18.2.Related Work ............................................. 401
     18.2.1.Shots/Actions ..................................... 401
     18.2.2.Scenes/Events ..................................... 402
     18.2.3.Objects ........................................... 404
     18.2.4.Spatial and Temporal Relations .................... 406
18.3.Feature Extraction Framework ............................. 407
     18.3.1.Shot Processor .................................... 407
     18.3.2.Object Processor .................................. 409
     18.3.3.Scene Processor ................................... 411
     18.3.4.Spatial Relationships Processor ................... 411
     18.3.5.Temporal Relationship Processor ................... 412
     18.3.6.Content Modeler ................................... 412
18.4.Modeling Content in MPEG-7 ............................... 413
     18.4.1.Scene and Shot Descriptions ....................... 413
     18.4.2.Object Representation ............................. 416
     18.4.3.Spatial Relationships ............................. 418
     18.4.4.Temporal Relationships ............................ 419
18.5.Conclusion ............................................... 420
References .................................................... 421

Index ......................................................... 425


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:10 2019. Размер: 32,276 bytes.
Посещение N 1589 c 25.08.2009