Zuur A.F. Analysing ecological data (New York; N.Y., 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаZuur A.F. Analysing ecological data / Zuur A.F., Ieno E.N., Smith G.M. - New York: Springer, 2007. - xxvi, 672 p.: ill. - Ref.: p.649-666. - Ind.: p.667-672. - ISBN 978-0-387-45967-7
 

Оглавление / Contents
 
Contributors .................................................. xix

1. Introduction ................................................. 1
   1.1. Part 1: Applied statistical theory ...................... 1
   1.2. Part 2: The case studies ................................ 3
   1.3. Data, software and flowcharts ........................... 6
2. Data management and software ................................. 7
   2.1. Introduction ............................................ 7
   2.2. Data management ......................................... 8
   2.3. Data preparation ........................................ 9
   2.4. Statistical software ................................... 13
3. Advice for teachers ......................................... 17
   3.1 Introduction ............................................ 17
4. Exploration ................................................. 23
   4.1. The first steps ........................................ 24
   4.2. Outliers, transformations and standardisations ......... 38
   4.3. A final thought on data exploration .................... 47
5. Linear regression ........................................... 49
   5.1. Bivariate linear regression ............................ 49
   5.2. Multiple linear regression ............................. 67
   5.3. Partial linear regression .............................. 73
6. Generalised linear modelling ................................ 79
   6.1. Poisson regression ..................................... 79
   6.2. Logistic regression .................................... 88
7. Additive and generalised additive modelling ................. 97
   7.1. Introduction ........................................... 97
   7.2. The additive model .................................... 101
   7.3. Example of an additive model .......................... 102
   7.4. Estimate the smoother and amount of smoothing ......... 104
   7.5. Additive models with multiple explanatory variables ... 108
   7.6. Choosing the amount of smoothing ...................... 112
   7.7. Model selection and validation ........................ 115
   7.8. Generalised additive modelling ........................ 120
   7.9. Where to go from here ................................. 124
8. Introduction to mixed modelling ............................ 125
   8.1. Introduction .......................................... 125
   8.2. The random intercept and slope model .................. 128
   8.3. Model selection and validation ........................ 130
   8.4. A bit of theory ....................................... 135
   8.5. Another mixed modelling example ....................... 137
   8.6. Additive mixed modelling .............................. 140
9. Univariate tree models ..................................... 143
   9.1. Introduction .......................................... 143
   9.2. Pruning the tree ...................................... 149
   9.3. Classification trees .................................. 152
   9.4. A detailed example: Ditch data ........................ 152
10.Measures of association .................................... 163
   10.1.Introduction .......................................... 163
   10.2.Association between sites: Q analysis ................. 164
   10.3.Association among species: R analysis ................. 171
   10.4.Q and R analysis: Concluding remarks .................. 176
   10.5.Hypothesis testing with measures of association ....... 179
11.Ordination - First encounter ............................... 189
   11.1 Bray-Curtis ordination ................................ 189
12.Principal component analysis and redundancy analysis ....... 193
   12.1.The underlying principle of PCA ....................... 193
   12.2.PCA: Two easy explanations ............................ 194
   12.3.PCA: Two technical explanations ....................... 196
   12.4.Example of PCA ........................................ 197
   12.5.The biplot ............................................ 200
   12.6.General remarks ....................................... 205
   12.7.Chord and Hellinger transformations ................... 206
   12.8.Explanatory variables ................................. 208
   12.9.Redundancy analysis ................................... 210
   12.10.Partial RDA and variance partitioning ................ 219
   12.11.PCA regression to deal with collinearity ............. 221
13.Correspondence analysis and canonical correspondence
   analysis ................................................... 225
   13.1.Gaussian regression and extensions .................... 225
   13.2.Three rationales for correspondence analysis .......... 231
   13.3.From RGR to CCA ....................................... 238
   13.4.Understanding the CCA triplot ......................... 240
   13.5.When to use PCA, CA, RDA or CCA ....................... 242
   13.6.Problems with CA and CCA .............................. 243
14.Introduction to discriminant analysis ...................... 245
   14.1.Introduction .......................................... 245
   14.2.Assumptions ........................................... 248
   14.3.Example ............................................... 250
   14.4.The mathematics ....................................... 254
   14.5.The numerical output for the sparrow data ............. 255
15.Principal coordinate analysis and non-metric
   multidimensional scaling ................................... 259
   15.1.Principal coordinate analysis ......................... 259
   15.2.Non-metric multidimensional scaling ................... 261
16.Time series analysis — Introduction ........................ 265
   16.1.Using what we have already seen before ................ 265
   16.2.Auto-regressive integrated moving average models
        with exogenous variables .............................. 281
17.Common trends and sudden changes ........................... 289
   17.1.Repeated LOESS smoothing .............................. 289
   17.2.Identifying the seasonal component .................... 293
   17.3.Common trends: MAFA ................................... 299
   17.4.Common trends: Dynamic factor analysis ................ 303
   17.5.Sudden changes: Chronological clustering .............. 315
18.Analysis and modelling of lattice data ..................... 321
   18.1.Lattice data .......................................... 321
   18.2.Numerical representation of the lattice structure ..... 323
   18.3.Spatial correlation ................................... 327
   18.4.Modelling lattice data ................................ 331
   18.5.More exotic models .................................... 334
   18.6.Summary ............................................... 338
19.Spatially continuous data analysis and modelling ........... 341
   19.1.Spatially continuous data ............................. 341
   19.2.Geostatistical functions and assumptions .............. 342
   19.3.Exploratory variography analysis ...................... 346
   19.4.Geostatistical modelling: Kriging ..................... 358
   19.5.A full spatial analysis of the bird radar data ........ 363
20.Univariate methods to analyse abundance of decapod
   larvae ..................................................... 373
   20.1.Introduction .......................................... 373
   20.2.The data .............................................. 374
   20.3.Data exploration ...................................... 377
   20.4.Linear regression results ............................. 379
   20.5.Additive modelling results ............................ 381
   20.6.How many samples to take? ............................. 383
   20.7.Discussion ............................................ 385
21.Analysing presence and absence data for flatfish
   distribution in the Tagus estuary, Portugal ................ 389
   21.1.Introduction .......................................... 389
   21.2.Data and materials .................................... 390
   21.3.Data exploration ...................................... 392
   21.4.Classification trees .................................. 395
   21.5.Generalised additive modelling ........................ 397
   21.6.Generalised linear modelling .......................... 398
   21.7.Discussion ............................................ 401
22.Crop pollination by honeybees in Argentina using
   additive mixed modelling ................................... 403
   22.1.Introduction .......................................... 403
   22.2.Experimental setup .................................... 404
   22.3.Abstracting the information ........................... 404
   22.4.First steps of the analyses: Data exploration ......... 407
   22.5.Additive mixed modelling .............................. 408
   22.6.Discussion and conclusions ............................ 414
23.Investigating the effects of rice farming on aquatic
   birds with mixed modelling ................................. 417
   23.1.Introduction .......................................... 417
   23.2.The data .............................................. 419
   23.3.Getting familiar with the data: Exploration ........... 420
   23.4.Building a mixed model ................................ 424
   23.5.The optimal model in terms of random components ....... 427
   23.6.Validating the optimal linear mixed model ............. 430
   23.7.More numerical output for the optimal model ........... 431
   23.8.Discussion ............................................ 433
24.Classification trees and radar detection of birds for
   North Sea wind farms ....................................... 435
   24.1.Introduction .......................................... 435
   24.2.From radars to data ................................... 436
   24.3.Classification trees .................................. 438
   24.4.A tree for the birds .................................. 440
   24.5.A tree for birds, clutter and more clutter ............ 445
   24.6.Discussion and conclusions ............................ 447
25.Fish stock identification through neural network
   analysis of parasite fauna ................................. 449
   25.1.Introduction .......................................... 449
   25.2.Horse mackerel in the northeast Atlantic .............. 450
   25.3.Neural networks ....................................... 452
   25.4.Collection of data .................................... 455
   25.5.Data exploration ...................................... 456
   25.6.Neural network results ................................ 457
   25.7.Discussion ............................................ 460
26.Monitoring for change: Using generalised least squares,
   non-metric multidimensional scaling, and the Mantel test
   on western Montana grasslands .............................. 463
   26.1.Introduction .......................................... 463
   26.2.The data .............................................. 464
   26.3.Data exploration ...................................... 467
   26.4.Linear regression results ............................. 472
   26.5.Generalised least squares results ..................... 476
   26.6.Multivariate analysis results ......................... 479
   26.7.Discussion ............................................ 483
27.Univariate and multivariate analysis applied on a Dutch
   sandy beach community ...................................... 485
   27.1.Introduction .......................................... 485
   27.2.The variables ......................................... 486
   27.3.Analysing the data using univariate methods ........... 487
   27.4.Analysing the data using multivariate methods ......... 494
   27.5.Discussion and conclusions ............................ 499
28.Multivariate analyses of South-American zoobenthic
   species - spoilt for choice ................................ 503
   28.1.Introduction and the underlying questions ............. 503
   28.2.Study site and sample collection ...................... 504
   28.3.Data exploration ...................................... 506
   28.4.The Mantel test approach .............................. 509
   28.5.The transformation plus RDA approach .................. 512
   28.6.Discussion and conclusions ............................ 512
29.Principal component analysis applied to harbour porpoise
   fatty acid data ............................................ 515
   29.1.Introduction .......................................... 515
   29.2.The data .............................................. 515
   29.3.Principal component analysis .......................... 517
   29.4.Data exploration ...................................... 518
   29.5.Principal component analysis results .................. 518
   29.6.Simpler alternatives to PCA ........................... 524
   29.7.Discussion ............................................ 526
30.Multivariate analyses of morphometric turtle data - size
   and shape .................................................. 529
   30.1.Introduction .......................................... 529
   30.2.The turtle data ....................................... 530
   30.3.Data exploration ...................................... 531
   30.4.Overview of classic approaches related to PCA ......... 534
   30.5.Applying PCA to the original turtle data .............. 536
   30.6.Classic morphometric data analysis approaches ......... 537
   30.7.A geometric morphometric approach ..................... 542
31.Redundancy analysis and additive modelling applied on
   savanna tree data .......................................... 547
   31.1.Introduction .......................................... 547
   31.2.Study area ............................................ 548
   31.3.Methods ............................................... 548
   31.4.Results ............................................... 551
   31.5.Discussion ............................................ 559
32.Canonical correspondence analysis of lowland pasture
   vegetation in the humid tropics of Mexico .................. 561
   32.1.Introduction .......................................... 561
   32.2.The study area ........................................ 562
   32.3.The data .............................................. 563
   32.4.Data exploration ...................................... 565
   32.5.Canonical correspondence analysis results ............. 568
   32.6.African star grass .................................... 571
   32.7.Discussion and conclusion ............................. 573
33.Estimating common trends in Portuguese fisheries
   landings ................................................... 575
   33.1.Introduction .......................................... 575
   33.2.The time series data .................................. 576
   33.3.MAFA and DFA .......................................... 579
   33.4.MAFA results .......................................... 580
   33.5.DFA results ........................................... 582
   33.6.Discussion ............................................ 587
34.Common trends in demersal communities on the
   Newfoundland-Labrador Shelf ................................ 589
   34.1.Introduction .......................................... 589
   34.2.Data .................................................. 590
   34.3.Time series analysis .................................. 591
   34.4.Discussion ............................................ 598
35.Sea level change and salt marshes in the Wadden Sea:
   A time series analysis ..................................... 601
   35.1.Interaction between hydrodynamical and biological
        factors ............................................... 601
   35.2.The data .............................................. 603
   35.3.Data exploration ...................................... 605
   35.4.Additive mixed modelling .............................. 607
   35.5.Additive mixed modelling results ...................... 610
   35.6.Discussion ............................................ 613
36.Time series analysis of Hawaiian waterbirds ................ 615
   36.1.Introduction .......................................... 615
   36.2.Endangered Hawaiian waterbirds ........................ 616
   36.3.Data exploration ...................................... 617
   36.4.Three ways to estimate trends ......................... 619
   36.5.Additive mixed modelling .............................. 626
   36.6.Sudden breakpoints .................................... 630
   36.7.Discussion ............................................ 631
37.Spatial modelling of forest community features in the
   Volzhsko-Kamsky reserve .................................... 633
   37.1.Introduction .......................................... 633
   37.2.Study area ............................................ 635
   37.3.Data exploration ...................................... 636
   37.4.Models of boreality without spatial auto-
        correlation ........................................... 638
   37.5.Models of boreality with spatial auto-correlation ..... 640
   37.6.Conclusion ............................................ 646

References .................................................... 649

Index ......................................................... 667


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:10 2019. Размер: 21,456 bytes.
Посещение N 2159 c 18.08.2009