Part 1. Physiological Implications of Oscillatory Processes
in Plants ............................................... 1
1. Rhythmic Leaf Movements: Physiological and Molecular
Aspects ...................................................... 3
Nava Moran
Abstract ..................................................... 3
1.1. Introduction ............................................ 3
1.1.1. Historical Perspective ........................... 3
1.1.2. The Types of Leaf Movements ...................... 4
1.2. The Mechanism of Leaf Movement: the Osmotic Motor ....... 7
1.2.1. Volume Changes ................................... 7
1.2.2. The Ionic Basis for the Osmotic Motor ............ 8
1.2.3. Plasma Membrane Transporters .................... 10
1.2.4. Tonoplast Transporters .......................... 16
1.3. Mechanisms of Regulation ............................... 17
1.3.1. Regulation by Protein Modification -
Phosphorylation ................................. 17
1.3.2. The Perception of Light ......................... 21
1.3.3. Intermediate Steps .............................. 23
1.3.4. Regulation by Other Effectors ................... 28
1.4. Unanswered Questions ................................... 30
1.4.1. Acute, Fast Signalling .......................... 31
1.4.2. The Clock Input and Output ...................... 31
References .................................................. 32
2. The Pollen Tube Oscillator: Integrating Biophysics and
Biochemistry into Cellular Growth and Morphogenesis ......... 39
Nuno Moreno, Renato Соlaco and Jose A. Feijo
Abstract .................................................... 39
2.1. Finding Stability in Instability ....................... 39
2.2. Why Pollen Tubes? ...................................... 42
2.3. Growth Oscillations: Trembling with Anticipation? ...... 42
2.4. Under Pressure ......................................... 45
2.5. Another Brick in the Cell Wall ......................... 46
2.6. Cytosolic Approaches to Oscillations: the Ions
Within ................................................. 47
2.7. On the Outside: Ions and Fluxes ........................ 51
2.8. Actin Cytoskeleton: Pushing it to the Limit ............ 54
2.9. Membrane Trafficking and Signalling on the Road ........ 55
2.10.Conclusions ............................................ 57
References .................................................. 58
3. Ultradian Growth Oscillations in Organs: Physiological
Signal or Noise? ............................................ 63
Tobias I. Baskin
Abstract .................................................... 63
3.1. Introduction ........................................... 63
3.1.1. Oscillations as Window into Growth .............. 63
3.1.2. Growth Versus Movement .......................... 65
3.2. Circumnutation: Growing Around in Circles? ............. 65
3.3. In Search of Ultradian Growth Oscillations ............. 68
3.4. The Power of Bending in Plants ......................... 70
3.5. Conclusion and Perspectives ............................ 73
References .................................................. 73
4. Nutation in Plants .......................................... 77
Sergio Mugnai, Elisa Azzarello, Elisa Masi, Camilla
Pandolfi and Stefano Mancuso
Abstract .................................................... 77
4.1. Introduction ........................................... 77
4.2. Theories and Models for Circumnutation ................. 81
4.2.1. 'Internal Oscillator' Model ..................... 83
4.2.2. 'Gravitropic Overshoot' Model ................... 84
4.2.3. The 'Mediating' Model ........................... 85
4.3. Root Circumnutation .................................... 86
References .................................................. 88
Part 2. Stomata Oscillations ................................... 91
5. Oscillations in Plant Transpiration ......................... 93
Anders Johnsson
Abstract .................................................... 93
5.1. Introduction ........................................... 93
5.2. Models for Rhythmic Water Transpiration ................ 95
5.2.1. Overall Description - "Lumped" Model ............ 95
5.2.2. Overall Description - "Composed" Models ......... 97
5.2.3. Self-Sustained Guard Cell Oscillations -
(Ca2+)cyt Oscillations ........................... 98
5.2.4. Water Channels .................................. 98
5.2.5. Comments on Modelling Transpiration Rhythms ..... 99
5.3. Basic Experimental Methods Used ........................ 99
5.4. Experimental Findings on Transpiration Oscillations ... 100
5.4.1. Occurrence of Transpiration Rhythms: Period
of Rhythms ..................................... 101
5.4.2. Some Environmental Parameters Influencing
Oscillations ................................... 101
5.4.3. Singularities of Transpiration Rhythms: Test
of Models ...................................... 104
5.5. Ionic Interference with Transpiration Oscillations .... 105
5.6. Patchy Water Transpiration from Leaf Surface .......... 106
5.7. Period Doubling and Bifurcations in Transpiration -
a Way to Chaos? ....................................... 107
5.8. Conclusions ........................................... 109
References ................................................. 1ll
6. Membrane Transport and Ca2+ Oscillations in Guard Cells .... 115
Michael R. Blatt, Carlos Garcia-Mata and Sergei
Sokolovski
Abstract ................................................... 115
6.1. Introduction .......................................... 115
6.2. Oscillations and the Membrane Platform ................ 116
6.3. Elements of Guard Cell Ion Transport .................. 119
6.4. Ca2+ and Voltage ...................................... 121
6.4.1. The Ca2+ Theme ................................. 122
6.4.2. [Ca2+i Oscillations ............................. 123
6.4.3. Voltage Oscillations ........................... 124
6.4.4. Membrane Voltage and the '[Ca2+]i Cassette' .... 125
6.5. Concluding Remarks .................................... 127
References ................................................. 128
7. Calcium Oscillations in Guard Cell Adaptive Responses
to the Environment ......................................... 135
Martin R. McAinsh
Abstract ................................................... 135
7.1. Introduction .......................................... 135
7.2. Guard Cells and Specificity in Ca2+ Signalling ........ 137
7.3. Ca2+ Signatures: Encoding Specificity in Ca2+
Signals ............................................... 138
7.4.1. Guard Cell Ca2+ Signatures: Correlative
Evidence ....................................... 140
7.4.2. Guard Cell Ca2+ Signatures: Evidence for
a Causal Relationship .......................... 146
7.4.3. Guard Cell Ca2+ Signatures: the Role of
Oscillations ................................... 147
7.5. The Ca2+ Sensor Priming Model of Guard Cell Ca2+
Signalling ............................................ 148
7.6. Decoding Ca2+ Signatures in Plants .................... 149
7.7. Challenging Prospects ................................. 150
References ................................................. 152
8. Circadian Rhythms in Stomata: Physiological
and Molecular Aspects ...................................... 157
Katharine E. Hubbard, Carlos T. Hotta, Michael
J. Gardner, Soeng Jin Baek, Neil Dalchau, Suhita
Dontamala, Antony N. Dodd and Alex A.R. Webb
Abstract ................................................... 157
8.1. Introduction .......................................... 157
8.2. Mechanisms of Stomatal Movements ...................... 159
8.3. The Circadian Clock ................................... 162
8.4. Circadian Regulation of Stomatal Aperture ............. 164
8.5. Structure of the Guard Cell Clock ..................... 166
8.6. Mechanisms of Circadian Control of Guard Cell
Physiology ............................................ 168
8.6.1. Calcium-Dependent Models for Circadian
Stomatal Movements ............................. 169
8.6.2. Calcium-Independent Models for Circadian
Stomatal Movements ............................. 170
8.7. Circadian Regulation of Sensitivity of Environmental
Signals ('Gating') .................................... 171
8.8. Conclusions ........................................... 172
References ................................................. 172
Part 3. Rhythms, Clocks and Development ....................... 179
9. How Plants Identify the Season by Using a Circadian
Clock ...................................................... 181
Wolfgang Engelmann
Abstract ................................................... 181
9.1. Introduction and History .............................. 181
9.2. Examples for Photoperiodic Reactions .................. 184
9.3. Bunning Hypothesis and Critical Tests ................. 185
9.4. The Circadian Clock and its Entrainment to the Day .... 189
9.5. Seasonal Timing of Flower Induction ................... 191
References ................................................. 194
10.Rhythmic Stem Extension Growth and Leaf Movements
as Markers of Plant Behaviour: the Integral Output from
Endogenous and Environmental Signals ....................... 199
Johannes Normann, Marco Vervliet-Scheebaum, Jolana
T.P. Albrechtova and Edgar Wagner
Abstract ................................................... 199
10.1.Introduction .......................................... 200
10.1.1.Life is Rhythmic ............................... 200
10.1.2.Rhythm Research: Metabolic and Genetic
Determination of Rhythmic Behaviour ............ 201
10.2.Rhythmicity in Chenopodium spp ........................ 203
10.2.1.Rhythmic Changes in Interorgan Communication
of Growth Responses ............................ 206
10.2.2.Local Hydraulic Signalling: the Shoot Apex
in Transition .................................. 209
10.2.3.Membrane Potential as the Basis for Hydro-
Electrochemical Signalling, Interorgan
Communication and Metabolic Control ............ 212
10.3.Conclusions and Perspectives: Rhythms in Energy
Metabolism as Determinants for Rhythmic Growth and
Leaf Movements ........................................ 213
References ................................................. 215
11.Rhythms and Morphogenesis .................................. 219
Peter W. Barlow and Jacqueline Lück
Abstract ................................................... 219
11.1.Introduction .......................................... 219
11.2.Developmental Theories and Their Application to
Rhythmic Morphogenesis ................................ 220
11.3.Rhythmic Patterns of Cellular Development Within
Cell Files ............................................ 221
11.4.Organogenetic Rhythms ................................. 227
11.4.1.Angiosperm Shoot Apices and Their
Phyllotaxies ................................... 228
11.4.2.The Plastochron ................................ 231
11.4.3.A Petri Net Representation of the
Plastochron .................................... 232
11.4.4.Rhythms of Cell Determination and
the Plastochron ................................ 236
11.5.The Cycle of Life ..................................... 237
11.6.A Glimpse of Cell Biology and Morphogenetic Rhythms ... 238
References ................................................. 240
12.Molecular Aspects of the Arabidopsis Circadian Clock ....... 245
Tracey Ann Cuin
Abstract ................................................... 245
12.1.Introduction .......................................... 245
12.1.1.Defining Features of Circadian Rhythms ......... 246
12.1.2.Overview of the Circadian System in
Arabidopsis .................................... 246
12.2.Entrainment - Inputs to the Clock ..................... 247
12.2.1.Light .......................................... 247
12.2.2.Pathways to the Central Oscillator ............. 249
12.2.3.Negative Regulation of Photoentrainment ........ 253
12.2.4.Temperature Entrainment ........................ 253
12.3.The Central Oscillator ................................ 254
12.3.1.The CCA1/LHY-TOC1 Model for the Arabidopsis
Central Oscillator ............................. 254
12.3.2.Is There more than One Oscillator Within
Plants? ........................................ 256
12.3.3.Regulation of the Circadian Oscillator ......... 257
12.4.Outputs of the Circadian System ....................... 258
12.5.Concluding Remarks .................................... 259
References ................................................. 259
Part 4 Theoretical Aspects of Rhythmical Plant Behaviour ...... 265
13.Rhythms, Clocks and Deterministic Chaos in Unicellular
Organisms .................................................. 267
David Lloyd
Abstract ................................................... 267
13.1.Time in Biology ....................................... 268
13.2.Circadian Rhythms ..................................... 270
13.2.1.Circadian Timekeeping in Unicellular
Organisms ...................................... 270
13.2.2.Cyanobacterial Circadian Rhythms ............... 270
13.3.Ultradian Rhythms: the 40-Min Clock in Yeast .......... 271
13.4.Oscillatory Behaviour During the Cell Division
Cycles of Lower Organisms ............................. 277
13.5.Ultradian Gating of the Cell Division Cycle ........... 278
13.5.1.Experimental Systems ........................... 278
13.5.2.The Model ...................................... 279
13.5.3.Computer Simulations ........................... 279
13.6.Chaos in Biochemistry and Physiology .................. 282
13.7.Functions of Rhythms .................................. 284
13.8.Biological Functions of Chaotic Performance ........... 286
13.9.Evolution of Rhythmic Performance ..................... 286
References ................................................. 288
14.Modelling Ca2+ Oscillations in Plants ...................... 295
Gerald Schonknecht and Claudia Bauer
Abstract ................................................... 295
14.1.Introduction .......................................... 296
14.2.Developing a Mathematical Model ....................... 297
14.3.Discussion of the Model ............................... 304
References ................................................. 309
15.Noise-Induced Phenomena and Complex Rhythms: Theoretical
Considerations, Modelling and Experimental Evidence ........ 313
Marc-Thorsten Hutt and Ulrich Luttge
Abstract ................................................... 313
15.1.Introduction .......................................... 314
15.2.Case Study I - Crassulacean Acid Metabolism (CAM) ..... 315
15.3.Case Study II - Stomatal Patterns ..................... 323
15.4.Experimental Observations of Complex Rhythms in
Plants ................................................ 327
15.5.A Path Towards Systems Biology ........................ 330
References ................................................. 335
16.Modelling Oscillations of Membrane Potential Difference .... 341
Mary Jane Beilby
Abstract ................................................... 341
16.1.Introduction .......................................... 341
16.2.Single Transporter Oscillations ....................... 342
16.2.1.Proton Pump and the Background State in
Charophytes .................................... 342
16.2.2.Putative K+ Pump and the Background State
in Ventricaria ventricosa ...................... 346
16.3.Two Transporter Interaction ........................... 346
16.3.1.Proton Pump and the Background State in
Hypertonic Regulation in Lamprothamnium spp .... 346
16.3.2.Interaction of the Proton Pump and the Proton
Channel in Chara spp ........................... 348
16.4.Multiple Transporter Interaction ...................... 350
16.4.1.Hypotonic Regulation in Salt-Tolerant
Charophytes .................................... 350
16.4.2.Repetitive Action Potentials in Salt-
Sensitive Charophytes in High Salinity ......... 352
16.5.Conclusions ........................................... 354
References .................................................... 354
Subject Index ................................................. 357
|