International series on numerical mathematics; 153 (Basel; Boston, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRoubi'cek T. Nonlinear partial differential equations with applications. - Basel; Boston: Birkhäuser Verlag, 2005. - xviii, 405 p.: ill. - (International series on numerical mathematics; 153). - ISBN-10 3-7643-7293-1; ISBN-13 978-3-7643-7293-4
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

Notational conventions ......................................... xv

1. Preliminary general material ................................. 1
   1.1. Functional analysis ..................................... 1
        1.1.1. Normed spaces, Banach spaces, locally convex
               spaces ........................................... 1
        1.1.2. Functions and mappings on Banach spaces, dual
               spaces ........................................... 3
        1.1.3. Convex sets ...................................... 6
        1.1.4. Compactness ...................................... 7
        1.1.5. Fixed-point theorems ............................. 8
   1.2. Function spaces ......................................... 8
        1.2.1. Continuous and smooth functions .................. 9
        1.2.2. Lebesgue integrable functions ................... 10
        1.2.3. Sobolev spaces .................................. 14
   1.3. Nemytskii mappings ..................................... 19
   1.4. Green formula and some inequalities .................... 20
   1.5. Bochner spaces ......................................... 22
   1.6. Some ordinary differential equations ................... 25


I. STEADY-STATE PROBLEMS ....................................... 27


2. Pseudomonotone or weakly continuous mappings ................ 29
   2.1. Abstract theory, basic definitions, Galerkin method .... 29
   2.2. Some facts about pseudomonotone mappings ............... 33
   2.3. Equations with monotone mappings ....................... 35
   2.4. Quasilinear elliptic equations ......................... 40
        2.4.1. Boundary-value problems for 2nd-order
               equations ....................................... 41
        2.4.2. Weak formulation ................................ 42
        2.4.3. Pseudomonotonicity, coercivity, existence of
               solutions ....................................... 46
        2.4.4. Higher-order equations .......................... 53
   2.5. Weakly continuous mappings, semilinear equations ....... 56
   2.6. Examples and exercises ................................. 58
        2.6.1. General tools ................................... 59
        2.6.2. Semilinear heat equation of type —div
               (A(x, u)fig.1u) = g ................................. 62
        2.6.3. Quasilinear equations of type — div(|fig.1u|p-2fig.1uu)
               +c(u, fig.1u)=g ..................................... 69
   2.7. Excursion to regularity for semilinear equations ....... 79
   2.8. Bibliographical remarks ................................ 86
3. Accretive mappings .......................................... 89
   3.1. Abstract theory ........................................ 89
   3.2. Applications to boundary-value problems ................ 93
        3.2.1. Duality mappings in Lebesgue and Sobolev
               spaces .......................................... 93
        3.2.2. Accretivity of monotone quasilinear mappings .... 95
        3.2.3. Accretivity of heat equation .................... 99
        3.2.4. Accretivity of some other boundary-value
               problems ....................................... 102
        3.2.5. Excursion to equations with measures in
               right-hand sides ............................... 103
   3.3. Exercises ............................................. 106
   3.4. Bibliographical remarks ............................... 107
4. Potential problems: smooth case ............................ 109
   4.1. Abstract theory ....................................... 109
   4.2. Application to boundary-value problems ................ 114
   4.3. Examples and exercises ................................ 120
   4.4. Bibliographical remarks ............................... 124
5. Nonsmooth problems; variational inequalities ............... 125
   5.1. Abstract inclusions with a potential .................. 125
   5.2. Application to elliptic variational inequalities ...... 129
   5.3. Some abstract nonpotential inclusions ................. 135
   5.4. Excursion to quasivariational inequalities ............ 144
   5.5. Exercises ............................................. 147
   5.6. Some applications to free-boundary problems ........... 152
        5.6.1. Porous media flow: a potential variational
               inequality ..................................... 152
        5.6.2. Continuous casting: a nonpotential
               variational inequality ......................... 156
   5.7. Bibliographical remarks ............................... 159
6. Systems of equations: particular examples .................. 161
   6.1. Minimization-type variational method: polyconvex
        functionals ........................................... 161
   6.2. Buoyancy-driven viscous flow .......................... 168
   6.3. Reaction-diffusion system ............................. 172
   6.4. Thermistor ............................................ 175
   6.5. Semiconductors ........................................ 178

II EVOLUTION PROBLEMS ......................................... 185

7. Special auxiliary tools .................................... 187
   7.1. Sobolev-Bochner space W1,p,g(I,V1,V2) ................... 187
   7.2. Gelfand triple, embedding W1,p,p'(I,V1,V*) ⊂ C(I;H) ..... 190
   7.3. Aubin-Lions lemma ..................................... 193
8. Evolution by pseudomonotone or weakly continuous
   mappings ................................................... 199
   8.1. Abstract initial-value problems ....................... 199
   8.2. Rothe method .......................................... 201
   8.3. Further estimates ..................................... 215
   8.4. Galerkin method ....................................... 221
   8.5. Uniqueness and continuous dependence on data .......... 228
   8.6. Application to quasilinear parabolic equations ........ 232
   8.7. Application to semilinear parabolic equations ......... 239
   8.8. Examples and exercises ................................ 242
        8.8.1. General tools .................................. 242
        8.8.2. Parabolic equation of type fig.1u—div(|fig.1u|p-2
               fig.1u)+c(u)=g ..................................... 244
        8.8.3. Semilinear heat equation C(u)fig.1u -
               div(k(u)fig.1u) = g ................................ 252
        8.8.4. Navier-Stokes equation fig.1u+(u · fig.1)u - fig.1u +
               fig.1π = g ......................................... 255
        8.8.5. Some more exercises ............................ 257
   8.9. Global monotonicity approach, periodic problems ....... 262
   8.10.Problems with a convex potential: direct method ....... 267
   8.11.Bibliographical remarks ............................... 272
9. Evolution governed by accretive mappings ................... 275
   9.1. Strong solutions ...................................... 275
   9.2. Integral solutions .................................... 280
   9.3. Excursion to nonlinear semigroups ..................... 286
   9.4. Applications to initial-boundary-value problems ....... 291
   9.5. Applications to some systems .......................... 295
   9.6. Bibliographical remarks ............................... 302
10.Evolution governed by certain set-valued mappings .......... 305
   10.1.Abstract problems: strong solutions ................... 305
   10.2.Abstract problems: weak solutions ..................... 309
   10.3.Examples of unilateral parabolic problems ............. 313
   10.4.Bibliographical remarks ............................... 318
11.Doubly-nonlinear problems .................................. 321
   11.1 Inclusions of the type ∂Ψ(fig.1u) + ∂Φ(u) ∈ fig.4 ............. 321
        11.1.1.Potential Ψ valued in fig.1 ∪ +∞ ................... 321
        11.1.2.Potential Φ valued in fig.1 ∪ +∞ ................... 327
        11.1.3.Uniqueness and continuous dependence on data ... 332
   11.2.Inclusions of the type fig.3E(u) + fig.3(u) ∪ fig.3 ............. 334
        11.2.1. The case E:∂Φ ................................. 335
        11.2.2. The case E nonpotential ....................... 339
        11.2.3. Uniqueness .................................... 341
   11.3. 2nd-order equations .................................. 342
   11.4. Exercises ............................................ 351
   11.5. Bibliographical remarks .............................. 355
12 Systems of equations: particular examples .................. 357
   12.1. Thermo-visco-elasticity .............................. 357
   12.2. Buoyancy-driven viscous flow ......................... 361
   12.3. Predator-prey system ................................. 365
   12.4. Semiconductors ....................................... 368
   12.5. Phase-field model .................................... 372
   12.6. Navier-Stokes-Nernst-Planck-Poisson-type system ...... 376

References .................................................... 383
Index ......................................................... 399


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:06 2019. Размер: 13,804 bytes.
Посещение N 1282 c 11.08.2009