Preface ...................................................... XIII
List of Contributors ........................................... XV
1. Artificial Photochemical Devices and Machines ................ 1
Vincenzo Balzani, Alberto Credi, and Margherita
Venturi
1.1. Introduction ............................................ 1
1.2. Molecular and Supramolecular Photochemistry ............. 2
1.2.1. Molecular Photochemistry ......................... 2
1.2.2. Supramolecular Photochemistry .................... 4
1.3. Wire-Type Systems ....................................... 5
1.3.1. Molecular Wires for Photoinduced Electron
Transfer ......................................... 5
1.3.2. Molecular Wires for Photoinduced Energy
Transfer ......................................... 9
1.4. Switching Electron-Transfer Processes in Wire-Type
Systems ................................................ 11
1.5. A Plug-Socket Device Based on a Pseudorotaxane ......... 13
1.6. Mimicking Electrical Extension Cables at the
Molecular Level ........................................ 14
1.7. Light-Harvesting Antennas .............................. 17
1.8. Artificial Molecular Machines .......................... 19
1.8.1. Introduction .................................... 19
1.8.2. Energy Supply ................................... 20
1.8.3. Light Energy .................................... 21
1.8.4. Threading-Dethreading of an Azobenzene-Based
Pseudorotaxane .................................. 21
1.8.5. Photoinduced Shuttling in Multicomponent
Rotaxanes: a Light-Powered Nanomachine .......... 23
1.9. Conclusion ............................................. 27
References .................................................. 28
2. Rotaxanes as Ligands for Molecular Machines and Metal-
Organic Frameworks .......................................... 33
Stephen J. Loeb
2.1. Interpenetrated and Interlocked Molecules .............. 33
2.1.1. Introduction .................................... 33
2.1.2. Templating of [2]Pseudorotaxanes ................ 33
2.1.3. [2]Rotaxanes .................................... 36
2.1.4. Higher Order [n]Rotaxanes ....................... 37
2.1.5. [3]Catenanes .................................... 40
2.2. Molecular Machines ..................................... 41
2.2.1. Introduction .................................... 41
2.2.2. Controlling Threading and Unthreading ........... 41
2.2.3. Molecular Shuttles .............................. 42
2.2.4. Flip Switches ................................... 44
2.3. Interlocked Molecules and Ligands ...................... 46
2.3.1. [2]Pseudorotaxanes as Ligands ................... 46
2.3.2. [2]Rotaxanes as Ligands ......................... 46
2.4. Materials from Interlocked Molecules ................... 48
2.4.1. Metal-Organic Rotaxane Frameworks (MORFs) ....... 48
2.4.2. One-dimensional MORFs ........................... 49
2.4.3. Two-dimensional MORFs ........................... 51
2.4.4. Three-dimensional MORFs ......................... 51
2.4.5. Controlling the Dimensionality of a MORF ........ 54
2.4.6. Frameworks Using Hydrogen Bonding ............... 57
2.5. Properties of MORFs: Potential as Functional
Materials .............................................. 57
2.5.1. Robust Frameworks ............................... 57
2.5.2. Porosity and Internal Properties ................ 59
2.5.3. Dynamics and Controllable Motion in the
Solid State ..................................... 59
References .................................................. 59
3. Strategic Anion Templation for the Assembly of
Interlocked Structures ...................................... 63
Michai J. Chmielewski and Paul D. Beer
3.1. Introduction ........................................... 63
3.2. Precedents of Anion-directed Formation of
Interwoven Architectures ............................... 64
3.3. Design of a General Anion Templation Motif ............. 70
3.4. Anion-templated Interpenetration ....................... 72
3.5. Probing the Scope of the New Methodology ............... 74
3.6. Anion-templated Synthesis of Rotaxanes ................. 79
3.7. Anion-templated Synthesis of Catenanes ................. 82
3.8. Functional Properties of Anion-templated Interlocked
Systems ................................................ 88
3.9. Summary and Outlook .................................... 93
References .................................................. 94
4. Synthetic Nanotubes from Calixarenes ........................ 97
Dmitry M. Rudkevich and Voltaire C. Organo
4.1. Introduction ........................................... 97
4.2. Early Calixarene Nanotubes ............................. 98
4.3. Metal Ion Complexes with Calixarene Nanotubes .......... 99
4.4. Nanotubes for N0X Gases ............................... 101
4.5. Self-assembling Structures ............................ 107
4.6. Conclusions and Outlook ............................... 108
References ................................................. 109
5. Molecular Gels - Nanostructured Soft Materials ............. 111
David K. Smith
5.1. Introduction to Molecular Gels ........................ 111
5.2. Preparation of Molecular Gels ......................... 114
5.3. Analysis of Molecular Gels ............................ 115
5.3.1. Macroscopic Behavior - "Table-Top" Rheology .... 115
5.3.1.1. Tube Inversion Methodology ............ 116
5.3.1.2. Dropping Ball Method .................. 116
5.3.2. Macroscopic Behavior - Rheology ................ 117
5.3.3. Macroscopic Behavior - Differential Scanning
Calorimetry .................................... 117
5.3.4. Nanostructure - Electron Microscopy ............ 118
5.3.5. Nanostructure - X-Ray Methods .................. 120
5.3.6. Molecular Scale Assembly - NMR Methods ......... 120
5.3.7. Molecular Scale Assembly - Other
Spectroscopic Methods .......................... 122
5.3.8. Chirality in Gels - Circular Dichroism
Spectroscopy ................................... 123
5.4. Building Blocks for Molecular Gels .................... 124
5.4.1. Amides, Ureas, Carbamates (-XCONH- Groups,
Hydrogen Bonding) .............................. 125
5.4.2. Carbohydrates (Multiple -OH Groups, Hydrogen
Bonding) ....................................... 127
5.4.3. Steroids/Bile Salts (Hydrophobic Surfaces) ..... 129
5.4.4. Nucleobases (Hydrogen Bonding and ir-ir
Stacking) ...................................... 130
5.4.5. Long-chain Alkanes (van der Waals
Interactions) .................................. 132
5.4.6. Dendritic Gels ................................. 133
5.4.7. Two-component Gels ............................. 137
5.5. Applications of Molecular Gels ........................ 141
5.5.1. Greases and Lubricants ......................... 142
5.5.2. Napalm ......................................... 142
5.5.3. Tissue Engineering - Nerve Regrowth
Scaffolds ...................................... 142
5.5.4. Drug Delivery - Responsive Gels ................ 144
5.5.5. Capturing (Transcribing) Self-assembled
Architectures .................................. 145
5.5.6. Sensory Gels ................................... 247
5.5.7. Conductive Gels ................................ 147
5.6. Conclusions ........................................... 148
References ................................................. 148
6. Nanoporous Crystals, Co-crystals, Isomers and Polymorphs
from Crystals .............................................. 155
Dario Braga, Marco Curzi, Stefano L. Giaffreda,
Fabrizia Grepioni, Lucia Maini, Anna Pettersen,
and Marco Polito
6.1. I ntroduction ......................................... 155
6.2. Nanoporous Coordination Network Crystals for
Uptake/Release of Small Molecules ..................... 156
6.3. Hybrid Organic-organometallic and Inorganic-
organometallic Co-crystals ............................ 161
6.4. Crystal Isomers and Crystal Polymorphs ................ 167
6.5. Dynamic Crystals - Motions in the Nano-world .......... 170
6.6. Conclusions ........................................... 172
References ................................................. 173
7. Supramolecular Architectures Based On Organometallic
Half-sandwich Complexes .................................... 179
Thomas B. Rauchfuss and Kay Severin
7.1. Introduction .......................................... 179
7.2. Macrocycles ........................................... ISO
7.3. Coordination Cages .................................... 187
7.3.1. Cyanometallate Cages ........................... 187
7.3.1.1. Electroactive Boxes ................... 189
7.3.1.2. Defect Boxes
{[(C5R5)M(CN)3]4[Cp*M]3}z .............. 190
7.3.2. Expanded Organometallic Cyano Cages ............ 191
7.3.3. Cages Based on N-Heterocyclic Ligands .......... 193
7.4. Expanded Helicates .................................... 198
7.5. Clusters .............................................. 200
7.6. Conclusions ........................................... 200
References ................................................. 201
8. Endochemistry of Self-assembled Hollow Spherical Cages ......205
Takashi Murase and Makoto Fujita
8.1. Introduction .......................................... 205
8.2. Biomacromolecular Cages ............................... 206
8.3. Polymer Micelles ...................................... 207
8.4. M12L24 Spheres ......................................... 207
8.4.1. Self-assembly of M12L24 Spheres ................. 207
8.4.2. Endohedral Functionalization of M12L24
Spheres ........................................ 209
8.4.3. Fluorous Nanodroplets .......................... 210
8.4.4. Uptake of Metal Ions into a Cage ............... 212
8.4.5. Polymerization in a Nutshell ................... 213
8.4.6. Photoresponsive Molecular Nanoballs ............ 216
8.4.7. Peptide-confmed Chiral Cages ................... 217
8.5. Conclusions and Outlook ............................... 219
References ................................................. 220
9. Polynuclear Coordination Cages ............................. 223
Michael D. Ward
9.1. Introduction .......................................... 223
9.2. Complexes Based on Poly(pyrazolyl)borate Ligands ...... 225
9.3. Complexes Based on Neutral Ligands with Aromatic
Spacers ............................................... 227
9.3.1. Complexes Based on Lo-Ph and L12-naph ............ 227
9.3.2. Larger Tetrahedral Cages Based on Lbiph ......... 234
9.3.3. Higher Nuclearity Cages Based on Other
Ligands ........................................ 235
9.4. Mixed-ligand Complexes: Opportunities for New
Structural Types ...................................... 243
References ................................................. 248
10.Periodic Nanostructures Based on Metal-Organic
Frameworks (MOFs): En Route to Zeolite-like Metal-
Organic Frameworks (ZMOFs) ................................. 251
Mohamed Eddaoudi andjarrod F. Eubank
10.1.Introduction .......................................... 251
10.2.Historical Perspective ................................ 252
10.2.1.Metal-Cyanide Compounds ........................ 252
10.2.2.Werner Complexes ............................... 254
10.2.3.Expanded Nitrogen-donor Ligands ................ 255
10.2.4.Carboxylate-based Ligands ...................... 258
10.3.Single-metal Ion-based Molecular Building Blocks ...... 261
10.3.1.Discrete, 2D and 3D Metal-Organic Assemblies ... 262
10.3.2.Zeolite-like Metal-Organic Frameworks
(ZMOFs) ........................................ 264
10.3.2.1.sod-ZMOF .............................. 265
10.3.2.2.rho-ZMOF .............................. 266
10.4.Conclusion ............................................ 270
References ................................................. 271
11.Polyoxometalate Nanocapsules: from Structure to Function ... 275
Charalampos Moiras and Leroy Cronin
11.1.Introduction .......................................... 275
11.2.Background and Classes of Polyoxometalates ............ 277
11.3.Wells-Dawson {M18O54} Capsules ......................... 278
11.4.Isopolyoxometalate Nanoclusters ....................... 280
11.5.Keplerate Clusters .................................... 282
11.6.Surface-Encapsulated Clusters (SECs): Organic
Nanostructures with Inorganic Cores ................... 285
11.7.Perspectives .......................................... 287
References ................................................. 287
12.Nano-capsules Assembled by the Hydrophobic Effect .......... 291
Bruce С. Gibb
12.1.Introduction .......................................... 291
12.2.Synthesis of a Water-soluble, Deep-cavity Cavitand .... 292
12.2.1.Structure of the Cavitand (What It Is and
What It Is Not) ................................ 292
12.2.2.Assembly Properties of the Cavitand ............ 294
12.2.3.Photophysics and Photochemistry Within Nano-
capsules ....................................... 299
12.2.4.Hydrocarbon Gas Separation Using Nano-
capsules ....................................... 301
12.3.Conclusions ........................................... 302
References ................................................. 303
13.Opportunities in Nanotechnology via Organic Solid-state
Reactivity: Nanostructured Co-crystals and Molecular
Capsules ................................................... 305
Dejan-Kresimir Bucar, Tamara D. Hamilton, and
Leonard R. MacGillivray
13.1.Introduction .......................................... 305
13.2.Template-controlled [2 + 2] Photodimerization in
the Solid State ....................................... 305
13.3.Nanostructured Co-crystals ............................ 307
13.3.1.Organic Nanocrystals and Single Crystal-to-
single Crystal Reactivity ...................... 308
13.4.Self-assembled Capsules Based on Ligands from the
Solid State ........................................... 309
13.5.Summary and Outlook ................................... 312
References ................................................. 313
14.Organic Nanocapsules ....................................... 317
Scott J. Dalgarno, Nicholas P. Power, and Jerry L.
Atwood
14.1.Introduction .......................................... 317
14.2.First Generation Nanocapsules ......................... 317
14.3.Second Generation Nanocapsules ........................ 320
14.4.Third Generation Nanocapsules ......................... 323
14.5.Fourth Generation Nanocapsules ........................ 329
14.6.Fifth Generation Nanocapsules ......................... 331
14.7.Sixth Generation Nanocapsules ......................... 339
14.8.From Spheres to Tubes ................................. 342
14.9.Conclusions ........................................... 344
References .................................................... 345
Index ......................................................... 347
|