Nixon M.S. Feature extraction and image processing (Amsterdam, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNixon M.S. Feature extraction and image processing / Nixon M.S., Aguado A.S. - 2nd ed. - Amsterdam: Academic Press / Elsevier, 2008. - xv, 406 p.: ill. - ISBN 978-0-12-372538-7
 

Оглавление / Contents
 
Preface ........................................................ xi

1. Introduction ................................................. 1
   1.1. Overview ................................................ 1
   1.2. Human and computer vision ............................... 1
   1.3. The human vision system ................................. 3
        1.3.1. The eye .......................................... 4
        1.3.2. The neural systemv ............................... 6
        1.3.3. Processing ....................................... 7
   1.4. Computer vision systems ................................. 9
        1.4.1. Cameras ......................................... 10
        1.4.2. Computer interfaces ............................. 12
        1.4.3. Processing an image ............................. 14
   1.5. Mathematical systems ................................... 15
        1.5.1. Mathematical tools .............................. 16
        1.5.2. Hello Mathcad, hello images ..................... 16
        1.5.3. Hello Matlab .................................... 21
   1.6. Associated literature .................................. 24
        1.6.1. Journals and magazines .......................... 24
        1.6.2. Textbooks ....................................... 25
        1.6.3. The web ......................................... 28
   1.7. Conclusions ............................................ 29
   1.8. References ............................................. 29
2. Images, sampling and frequency domain processing ............ 33
   2.1. Overview ............................................... 33
   2.2. Image formation ........................................ 34
   2.3. The Fourier transform .................................. 37
   2.4. The sampling criterion ................................. 43
   2.5. The discrete Fourier transform ......................... 47
        2.5.1. One-dimensional transform ....................... 47
        2.5.2. Two-dimensional transform ....................... 49
   2.6. Other properties of the Fourier transform .............. 54
        2.6.1. Shift invariance ................................ 54
        2.6.2. Rotation ........................................ 56
        2.6.3. Frequency scaling ............................... 56
        2.6.4. Superposition (linearity) ....................... 57
        2.6.1. 2.7. Transforms other than Fourier .............. 58
        2.7.1. Discrete cosine transform ....................... 58
        2.7.2. Discrete Hartley transform ...................... 59
        2.7.3. Introductory wavelets: the Gabor wavelet ........ 61
        2.7.4. Other transforms ................................ 63
   2.8. Applications using frequency domain properties ......... 64
   2.9. Further reading ........................................ 65
   2.10.References ............................................. 66
3. Basic image processing operations ........................... 69
   3.1. Overview ............................................... 69
   3.2. Histograms ............................................. 70
   3.3. Point operators ........................................ 71
        3.3.1. Basic point operations .......................... 71
        3.3.2. Histogram normalization ......................... 74
        3.3.3. Histogram equalization .......................... 75
        3.3.4. Thresholding .................................... 77
   3.4. Group operations ....................................... 81
        3.4.1. Template convolution ............................ 81
        3.4.2. Averaging operator .............................. 84
        3.4.3. On different template size ...................... 87
        3.4.4. Gaussian averaging operator ..................... 88
   3.5. Other statistical operators ............................ 90
        3.5.1. More on averaging ............................... 90
        3.5.2. Median filter ................................... 91
        3.5.3. Mode filter ..................................... 94
        3.5.4. Anisotropic diffusion ........................... 96
        3.5.5. Force field transform .......................... 101
        3.5.6. Comparison of statistical operators ............ 102
   3.6. Mathematical morphology ............................... 103
        3.6.1. Morphological operators ........................ 104
        3.6.2. Grey-level morphology .......................... 107
        3.6.3. Grey-level erosion and dilation ................ 108
        3.6.4. Minkowski operators ............................ 109
   3.7. Further reading ....................................... 112
   3.8. References ............................................ 113
4. Low-level feature extraction (including edge detection) .... 115
   4.1. Overview .............................................. 115
   4.2. First order edge detection operators .................. 117
        4.2.1. Basic operators ................................ 117
        4.2.2. Analysis of the basic operators ................ 119
        4.2.3. Prewitt edge detection operator ................ 121
        4.2.4. Sobel edge detection operator .................. 123
        4.2.5. Canny edge detection operator .................. 129
   4.3. Second order edge detection operators ................. 137
        4.3.1. Motivation ..................................... 137
        4.3.2. Basic operators: the Laplacian ................. 137
        4.3.3. Marr-Hildreth operator ......................... 139
   4.4. Other edge detection operators ........................ 144
   4.5. Comparison of edge detection operators ................ 145
   4.6. Further reading on edge detection ..................... 146
   4.7. Phase congruency ...................................... 147
   4.8. Localized feature extraction .......................... 152
        4.8.1. Detecting image curvature (corner
               extraction) .................................... 153
               4.8.1.1. Definition of curvature ............... 153
               4.8.1.2. Computing differences in edge
                        direction ............................. 154
               4.8.1.3. Measuring curvature by changes in
                        intensity (differentiation) ........... 156
               4.8.1.4. Moravec and Harris detectors .......... 159
               4.8.1.5. Further reading on curvature .......... 163
        4.8.2. Modern approaches: region/patch analysis ....... 163
               4.8.2.1. Scale invariant feature transform ..... 163
               4.8.2.2. Saliency .............................. 166
               4.8.2.3. Other techniques and performance
                        issues ................................ 167
   4.9. Describing image motion ............................... 167
        4.9.1. Area-based approach ............................ 168
        4.9.2. Differential approach .......................... 171
        4.9.3. Further reading on optical flow ................ 177
   4.10.Conclusions ........................................... 178
   4.11.References ............................................ 178
5. Feature extraction by shape matching ....................... 183
   5.1. Overview .............................................. 183
   5.2. Thresholding and subtraction .......................... 184
   5.3. Template matching ..................................... 186
        5.3.1. Definition ..................................... 186
        5.3.2. Fourier transform implementation ............... 193
        5.3.3. Discussion of template matching ................ 196
   5.4. Hough transform ....................................... 196
        5.4.1. Overview ....................................... 196
        5.4.2. Lines .......................................... 197
        5.4.3. Hough transform for circles .................... 203
        5.4.4. Hough transform for ellipses ................... 207
        5.4.5. Parameter space decomposition .................. 210
               5.4.5.1. Parameter space reduction for lines ... 210
               5.4.5.2. Parameter space reduction for
                        circles ............................... 212
               5.4.5.3. Parameter space reduction for
                        ellipses .............................. 217
   5.5. Generalized Hough transform ........................... 221
        5.5.1. Formal definition of the GHT ................... 221
        5.5.2. Polar definition ............................... 223
        5.5.3. The GHT technique .............................. 224
        5.5.4. Invariant GHT .................................. 228
   5.6. Other extensions to the Hough transform ............... 235
   5.7. Further reading ....................................... 236
   5.8. References ............................................ 237
6. Flexible shape extraction (snakes and other techniques) .... 241
   6.1. Overview .............................................. 241
   6.2. Deformable templates .................................. 242
   6.3. Active contours (snakes) .............................. 244
        6.3.1. Basics ......................................... 244
        6.3.2. The greedy algorithm for snakes ................ 246
        6.3.3. Complete (Kass) snake implementation ........... 252
        6.3.4. Other snake approaches ......................... 257
        6.3.5. Further snake developments ..................... 257
        6.3.6. Geometric active contours ...................... 261
   6.4. Shape skeletonization ................................. 266
        6.4.1. Distance transforms ............................ 266
        6.4.2. Symmetry ....................................... 268
   6.5. Flexible shape models: active shape and active
        appearance ............................................ 272
   6.6. Further reading ....................................... 275
   6.7. References ............................................ 276
7. Object description ......................................... 281
   7.1. Overview .............................................. 281
   7.2. Boundary descriptions ................................. 282
        7.2.1. Boundary and region ............................ 282
        7.2.2. Chain codes .................................... 283
        7.2.3. Fourier descriptors ............................ 285
               7.2.3.1. Basis of Fourier descriptors .......... 286
               7.2.3.2. Fourier expansion ..................... 287
               7.2.3.3. Shift invariance ...................... 289
               7.2.3.4. Discrete computation .................. 290
               7.2.3.5. Cumulative angular function ........... 292
               7.2.3.6. Elliptic Fourier descriptors .......... 301
               7.2.3.7. Invariance ............................ 305
   7.3. Region descriptors .................................... 311
        7.3.1. Basic region descriptors ....................... 311
        7.3.2. Moments ........................................ 315
               7.3.2.1. Basic properties ...................... 315
               7.3.2.2. Invariant moments ..................... 318
               7.3.2.3. Zernike moments ....................... 320
               7.3.2.4. Other moments ......................... 324
   7.4. Further reading ....................................... 325
   7.5. References ............................................ 326
8. ntroduction to texture description, segmentation and
   classification ............................................. 329
   8.1. Overview .............................................. 329
   8.2. What is texture? ...................................... 330
   8.3. Texture description ................................... 332
        8.3.1. Performance requirements ....................... 332
        8.3.2. Structural approaches .......................... 332
        8.3.3. Statistical approaches ......................... 335
        8.3.4. Combination approaches ......................... 337
   8.4. Classification ........................................ 339
        8.4.1. The ^-nearest neighbour rule ................... 339
        8.4.2. Other classification approaches ................ 343
   8.5. Segmentation .......................................... 343
   8.6. Further reading ....................................... 345
   8.7. References ............................................ 346
9. Appendix 1: Example worksheets ............................. 349
   9.1. Example Mathcad worksheet for Chapter 3 ............... 349
   9.2. Example Matlab worksheet for Chapter 4 ................ 352
10.Appendix 2: Camera geometry fundamentals ................... 355
   10.1.Image geometry ........................................ 355
   10.2.Perspective camera .................................... 355
   10.3.Perspective camera model .............................. 357
        10.3.1.Homogeneous coordinates and projective
               geometry ....................................... 357
               10.3.1.1.Representation of a line and
                        duality ............................... 358
               10.3.1.2.Ideal points .......................... 358
               10.3.1.3.Transformations in the projective
                        space ................................. 359
        10.3.2.Perspective camera model analysis .............. 360
        10.3.3.Parameters of the perspective camera model ..... 363
   10.4.Affine camera ......................................... 364
        10.4.1.Affine camera model ............................ 365
        10.4.2.Affine camera model and the perspective
               projection ..................................... 366
        10.4.3.Parameters of the affine camera model .......... 368
   10.5.Weak perspective model ................................ 369
   10.6.Example of camera models .............................. 371
   10.7.Discussion ............................................ 379
   10.8.References ............................................ 380
11.Appendix 3: Least squares analysis ......................... 381
   11.1.The least squares criterion ........................... 381
   11.2.Curve fitting by least squares ........................ 382
12.Appendix 4: Principal components analysis .................. 385
   12.1.Introduction .......................................... 385
   12.2.Data .................................................. 385
   12.3.Covariance ............................................ 386
   12.4.Covariance matrix ..................................... 388
   12.5.Data transformation ................................... 389
   12.6.Inverse transformation ................................ 390
   12.7.Eigenproblem .......................................... 391
   12.8.Solving the eigenproblem .............................. 392
   12.9.PCA method summary .................................... 392
   12.10.Example .............................................. 393
   12.11.References ........................................... 398

Index ......................................................... 399


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 19,202 bytes.
Посещение N 2396 c 11.08.2009