Natural-based polymers for biomedical applications (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNatural-based polymers for biomedical applications / ed.-in-chief, Reis R.L.; sect. ed. Neves N.M. et al. - Boca Raton: CRC Press; Cambridge: Woodhead Pub., 2008. - xxv, 802 p.: ill. - ISBN 978-1-84569-264-3; ISBN 978-1-84569-481-4
 

Оглавление / Contents
 
Contributor contact details .................................. xvii
Preface ..................................................... xxiii

Part I Sources, properties, modification and processing
       of natural-based polymers

1. Polysaccharides as carriers of bioactive agents for
   medical applications ......................................... 3
      R. Pawar, W. Jadhav, S. Bhusare and R. Borade,
      Dnyanopasak College, India, S. Farber, D. Itzkowitz
      and A. Domb, The Hebrew University, Jerusalem, Israel

   1.1. Introduction ............................................ 3
   1.2. Starch .................................................. 6
   1.3. Cellulose ............................................... 7
   1.4. Heparinoid (sulfated polysaccharides) ................... 8
   1.5. Dextran ................................................ 10
   1.6. Pectin ................................................. 12
   1.7. Arabinogalactan ........................................ 13
   1.8. Drug conjugated polysaccharides ........................ 15
   1.9. Polysaccharide dextrans ................................ 19
   1.10.Mannan ................................................. 22
   1.11.Pullulan ............................................... 23
   1.12.Polysaccharide macromolecule-protein conjugates ........ 24
   1.13.Cationic polysaccharides for gene delivery ............. 25
   1.14.Diethylaminoethyl-dextran .............................. 26
   1.15.Polysaccharide-oligoamine based conjugates ............. 27
   1.16.Chitosan ............................................... 27
   1.17.Applications of polysaccharides as drug carriers ....... 31
   1.18.Applications of dextran conjugates ..................... 33
   1.19.Site-specific drug delivery ............................ 38
   1.20.Pectin drug site-specific delivery ..................... 38
   1.21.Liposomal drug delivery ................................ 40
   1.22.References ............................................. 45

2. Purification of naturally occurring biomaterials ............ 54
      M.N. Gupta, Indian Institute of Technology Delhi,
      India

   2.1. Introduction ........................................... 54
   2.2. Classes of naturally occurring biomaterials ............ 55
   2.3. Downstream processing of small molecular. weight
        natural products ....................................... 57
   2.4. Purification strategies for proteins ................... 60
   2.5. Purification of lipids ................................. 67
   2.6. Purification of polysaccharides ........................ 71
   2.7. Purification of nucleic acids .......................... 72
   2.8. Purification of complex biomaterials ................... 75
   2.9. Future trends .......................................... 76
   2.10.Acknowledgement ........................................ 77
   2.11.Sources of further information ......................... 77
   2.12.References ............................................. 78

3. Processing of starch-based blends for biomedical
   applications ................................................ 85
      R.A. Sousa, V.M. Correlo, S. Chung, N.M. Neves,
      J.F. Mano and R.L. Reis, 3B's Research Group,
      University of Minho, Portuga l.
 
   3.1. Introduction ........................................... 85
   3.2. Starch ................................................. 85
   3.3. Starch-based blends .................................... 88
   3.4. Conclusions ............................................ 98
   3.5. References ............................................. 99

4. Controlling the degradation of natural polymers for
   biomedical applications .................................... 106
      H.S. Azevedo, Т.С. Santos and R.L. Reis, 3B's
      Research Group, University of Minho, Portugal

   4.1. Introduction .......................................... 106
   4.2. The importance of biodegradability of natural
        polymers in biomedical applications ................... 106
   4.3. Degradation mechanisms of natural polymers and
        metabolic pathways for their disposal in the body ..... 107
   4.4. Assessing the in vitro and in vivo biodegradability
        of natural polymers ................................... 111
   4.5. Controlling the degradation rate of natural
        polymers .............................................. 120
   4.6. Concluding remarks .................................... 124
   4.6. Acknowledgements ...................................... 125
   4.6. References ............................................ 125

5. Smart systems based on polysaccharides ..................... 129
      M.N. Gupta and S. Raghava, Indian Institute of
      Technology Delhi, India
 
   5.1. What are smart materials? ............................. 129
   5.2. Chitin and chitosan ................................... 131
   5.3. Alginates ............................................. 136
   5.4. Carrageenans .......................................... 140
   5.5. Other miscellaneous smart polysaccharides and their
        applications .......................................... 145
   5.6. Polysaccharide-based composite materials .............. 146
   5.7. Future trends ......................................... 149
   5.8. Acknowledgement ....................................... 152
   5.9. Sources of further information ........................ 152
   5.10.References ............................................ 154

6. Surface modification and biomimetic coatings Surface
   modification for natural-based biomedical polymers ......... 165
      I. Pashkuleva, P.M. Lopez-Perez and R.L. Reis,
      3B's Research Group, University of Minho, Portugal

   6.1. Introduction .......................................... 165
   6.2. Some terms and classifications ........................ 165
   6.3. Wet chemistry in surface modification ................. 167
   6.4. Physical methods for surface alterations .............. 171
   6.6. Grafting .............................................. 177
   6.6. Bio-approaches: Mimicking the cell-cell
        interactions .......................................... 179
   6.7. Future trends ......................................... 186
   6.8. Acknowledgements ...................................... 186
   6.9. References ............................................ 186

7. New biomineralization strategies for the use of
   natural-based polymeric materials in bone-tissue
   engineering ................................................ 193
      I.B. Leonor, S. Gomes, P.C. Bessa, J.F. Mano,
      R.L. Reis, 3B's Research Group, University of Minho,
      Portugal and M. Casal, CBMA - Molecular and
      Environmental Biology Center, University of Minho,
      Portugal

   7.1. Introduction .......................................... 193
   7.2. The structure, development and mineralization of
        bone .................................................. 194
   7.3. Bone morphogenetic proteins in tissue engineering ..... 201
   7.4. Bio-inspired calcium-phosphate mineralization from
        solution .............................................. 206
   7.5. General remarks and future trends ..................... 216
   7.6. Acknowledgments ....................................... 217
   7.7. References ............................................ 217

8. Natural-based multilayer films for biomedical
   applications ............................................... 231
      C. Picart, Universite Montpellier, France

   8.1. Introduction .......................................... 231
   8.2. Physico-chemical properties ........................... 234
   8.3. Different types of natural-based multilayer films
        for different applications ............................ 240
   8.4. Bioactivity, cell adhesion, and biodegradability
        properties ............................................ 244
   8.5. Modulation of film mechanical properties .............. 248
   8.6. Future trends ......................................... 250
   8.7. Sources of further information and advice ............. 251
   8.8. References ............................................ 252

9. Peptide modification of polysaccharide scaffolds for
   targeted cell signaling .................................... 260
      S. Levesque, R. Wylie, Y. Aizawa and M. Shoichet,
      University of Toronto, Canada

   9.1. Introduction .......................................... 260
   9.2. Polysaccharide scaffolds in tissue engineering ........ 265
   9.3. Peptide immobilization ................................ 267
   9.4. Measurement ........................................... 272
   9.5. Challenges associated with peptide immobilization ..... 274
   9.6. Tissue engineering approaches targeting cell
        signaling ............................................. 275
   9.7. References ............................................ 277

Part III Biodegradable scaffolds for tissue regeneration

10.Scaffolds based on hyaluronan derivatives in
   biomedical applications .................................... 291
      E. Tognana, Fidia Advanced Biopolymers s.r.l., Italy

   10.1.Introduction .......................................... 291
   10.2.Hyaluronan ............................................ 291
   10.3.Hyaluronan-based scaffolds for biomedical
        applications .......................................... 293
   10.4.Clinical applications ................................. 298
   10.5.Future trends ......................................... 308
   10.6.Sources of further information and advice ............. 309
   10.7.References ............................................ 310

11.Electrospun elastin and collagen nanofibers and their
   application as biomaterials ................................ 315
      R. Sallach and E. Chaikof, Emory University/Georgia
      Institute of Technology, USA

   11.1.Introduction .......................................... 315
   11.2.Electrospinning as a biomedical fabrication
        technology ............................................ 316
   11.3.Generation of nanofibers with controlled structures
         and morphology ....................................... 317
   11.4.Generation of collagen and elastin small-diameter
         fibers and fiber networks ............................ 318
   11.5.Biological role of elastin ............................ 321
   11.6.Generation of crosslinked fibers and fiber
        networks .............................................. 328
   11.7.Multicomponent electrospun assemblies ................. 329
   11.8.Future trends ......................................... 331
   11.9.References ............................................ 332

12.Starch-polycaprolactone based scaffolds in bone and
   cartilage tissue engineering approaches .................... 337
      M.E. Gomes, J.T. Oliveira, M.T. Rodrigues,
      M.I. Santos, K. Tuzlakoglu, С.A. Viegas, I.R. Dias
      and R.L. Reis, 3B's Research Group, University
      of Minho, Portugal

   12.1.Introduction .......................................... 337
   12.2.Starch+ ε-polycaprolactone (SPCL) fiber meshes ........ 338
   12.3.SPCL-based scaffold architecture, stem cell
        proliferation and differentiation ..................... 339
   12.4.In vivo functionality of SPCL fiber-mesh scaffolds .... 341
   12.5.Cartilage tissue engineering using SPCL fiber-mesh
        scaffolds ............................................. 342
   12.6.Advanced approaches using SPCL scaffolds for bone
        tissue engineering aiming at improved
        vascularization ....................................... 346
   12.7.Conclusions ........................................... 350
   12.8.Acknowledgments ....................................... 351
   12.9.References ............................................ 351

13.Chitosan-based scaffolds in orthopedic applications ........ 357
      K. Tuzlakoglu and R.L. Reis, 3B's Research Group,
      University of Minho, Portugal

   13.1.Introduction: Chemical and physical structure
        of chitosan and its derivatives ....................... 357
   13.2.Production methods for scaffolds based on chitosan
        and its composites or blends .......................... 358
   13.3.Orthopedic applications ............................... 365
   13.4.Conclusions and future trends ......................... 369
   13.5.Acknowledgements ...................................... 369
   13.6.References ............................................ 369

14.Elastin-like systems for tissue engineering ................ 374
   J.Rodriguez-Cabello, A. Ribeiro, J. Reguera, A. Girotti and
   A. Testera, Universidad de Valladolid, Spain

   14.1.Introduction .......................................... 374
   14.2.Genetic engineering of protein-based polymers ......... 375
   14.3.Genetic strategies for synthesis of protein-based
        polymers .............................................. 376
   14.4.State-of-the-art in genetically-engineered protein-
        based polymers (GEBPs) ................................ 377
   14.5.Elastin-like polymers ................................. 377
   14.6.Self-assembly behaviour of peptides and proteins ...... 379
   14.7.Self-assembly of elastin-like polymers (ELPs) ......... 379
   14.8.Biocompatibility of ELPs .............................. 381
   14.9.Biomedical applications ............................... 382
   14.10.ELPs for drug delivery ............................... 382
   14.11.Tissue engineering ................................... 383
   14.12.Self-assembling properties of ELPs for tissue
        engineering ........................................... 388
   14.13.Processability of ELPs for tissue engineering ........ 388
   14.14.Future trends ........................................ 389
   14.15.References ........................................... 391

15.Collagen-based scaffolds for tissue engineering ............ 396
      G. Chen, N. Kawazoe and T. Tateishi, National Institute
      for Materials Science, Japan

   15.1.Introduction .......................................... 396
   15.2.Structure and properties of collagen .................. 396
   15.3.Collagen sponge ....................................... 397
   15.4.Collagen gel .......................................... 400
   15.5.Collagen-glycosoaminoglycan (GAG) scaffolds ........... 402
   15.6.Acellularized scaffolds ............................... 404
   15.7.Hybrid scaffolds ...................................... 405
   15.8.Future trends ......................................... 409
   15.9.References ............................................ 409

16.Polyhydroxyalkanoate and its potential for biomedical
   applications ............................................... 416
      P. Furrer and M. Zinn, Swiss Federal Laboratories for
      Materials Testing and Research (Empa), Switzerland,
      and S. Panke, Swiss Federal Institute of Technology
      (ETH), Switzerland

   16.1.Introduction .......................................... 416
   16.2.Biosynthesis .......................................... 417
   16.3.Chemical digestion of non-PHA.biomass ................. 425
   16.4.Purification of PHA ................................... 431
   16.5.Potential applications of PHA in medicine and
        pharmacy .............................................. 434
   16.6.Conclusions and future trends ......................... 437
   16.7.References ............................................ 437

17.Electrospinning of natural proteins for tissue
   engineering scaffolding .................................... 446
      P.I. Lelkes, M. Li, A. Perets, L. Lin, J. Han and
      D. Woerdeman, Drexel University, USA

   17.1.Introduction .......................................... 446
   17.2.The electrospinning process ........................... 448
   17.3.Electrospinning natural animal polymers ............... 455
   17.4.Electrospinning blends of synthetic and natural
        polymers .............................................. 460
   17.5.Electrospinning novel natural 'green' plant
        polymers for tissue engineering ....................... 466
   17.6.Cellular responses to electrospun scaffolds: Does
        fiber diameter matter? ................................ 474
   17.7.Conclusions and future trends ......................... 474
   17.8.Sources of further information and advice ............. 475
   17.9.References ............................................ 476

Part IV Naturally-derived hydrogels: Fundamentals,
        challenges and applications in tissue engineering
        and regenerative medicine

18.Hydrogels from polysaccharide-based materials:
   Fundamentals and applications in regenerative
   medicine ................................................... 485
      J.T. Oliveira and R.L. Reis, 3B's Research Group,
      University of Minho, Portugal

   18.1.Introduction: Definitions and properties of
        hydrogels ............................................. 485
   18.2.Applications of hydrogels produced from different
        polysaccharides in tissue engineering and
        regenerative medicine ................................. 487
   18.3.Agarose ............................................... 488
   18.4.Alginate .............................................. 489
   18.5.Carrageenan ........................................... 491
   18.6.Cellulose ............................................. 492
   18.7.Chitin/chitosan ....................................... 493
   18.8.Chondroitin sulfate ................................... 495
   18.9.Dextran ............................................... 496
   18.10.Gellan ............................................... 497
   18.11.Hyaluronic acid ...................................... 498
   18.12.Starch ............................................... 500
   18.13.Xanthan .............................................. 501
   18.14.Conclusion ........................................... 502
   18.15.References ........................................... 503
 
19.Alginate hydrogels as matrices for tissue engineering ...... 515
      H. Park and K.-Y. Lee, Hanyang University, South Korea

   19.1.Introduction .......................................... 515
   19.2.Properties of alginate ................................ 516
   19.3.Methods of gelling .................................... 520
   19.4.Applications of alginate hydrogels in tissue
        engineering ........................................... 523
   19.5.Summary and future trends ............................. 528
   19.6.References ............................................ 528

20.Fibrin matrices in tissue engineering ...................... 533
      B. Tawil, H. Duong and B. Wu, University of California
      Los Angeles, USA

   20.1.Introduction .......................................... 533
   20.2.Fibrin formation ...................................... 534
   20.3.Fibrin use in surgery ................................. 535
   20.4.Fibrin matrices to deliver bioactive molecules ........ 535
   20.5.Fibrin - cell constructs .............................. 536
   20.6.Mechanical characteristics of fibrin scaffold ......... 540
   20.7.Future trends ......................................... 541
   20.8.Conclusions ........................................... 542
   20.9.References ............................................ 543

21.Natural-based polymers for encapsulation of living
   cells: Fundamentals, applications and challenges ........... 549
      P. De Vos, University Hospital of Groningen, The
      Netherlands

   21.1. Introduction ......................................... 549
   21.2.Approaches of encapsulation: Materials and
        biocompatibility issues ............................... 550
   21.3.Physico-chemistry of microcapsules and
        biocompatibility ...................................... 556
   21.4.Immunological considerations .......................... 559
   21.5.Conclusions and future trends ......................... 561
   21.6.Sources of further information and advice ............. 563
   21.7.References ............................................ 564

22.Hydrogels for spinal cord injury regeneration .............. 570
      A.J. Salgado and N.Sousa, Life and Health Sciences
      Research Institute (ICVS), University of Minho,
      Portugal, and N.A. Silva, N.M. Neves and R.L. Reis,
      3B's Research Group, University of Minho, Portugal

   22.1.Introduction .......................................... 570
   22.2.Brief insights on central nervous system biology ...... 571
   22.3.Current approaches for SCI repair ..................... 576
   22.4.Hydrogel-based systems in SCI regenerative medicine ... 578
   22.5.Conclusions and future trends ......................... 587
   22.6.Acknowledgements ...................................... 588
   22.7.References ............................................ 588

Part V Systems for the sustained release of molecules

23.Particles for controlled drug delivery ..................... 597
      E.Т. Вaran and R.L. Reis, 3B's Research Group,
      University of Minho, Portugal

   23.1.Introduction .......................................... 597
   23.2.Novel particle processing methods ..................... 597
   23.3.Hiding particles: The stealth principle ............... 602
   23.4.Finding the target .................................... 604
   23.5.Delivery of bioactive agents at the target site and
        novel deliveries ...................................... 608
   23.6.Viral delivery systems ................................ 611
   23.7.Conclusions ........................................... 612
   23.8.Acknowledgements ...................................... 613
   23.9.References ............................................ 613

24.Thiolated chitosans in non-invasive drug delivery .......... 624
      A. Bernkop-Schnürch, Leopold-Franzens University,
      Austria

   24.1.Introduction .......................................... 624
   24.2.Thiolated chitosans ................................... 625
   24.3.Properties of thiolated chitosans ..................... 625
   24.4.Drug delivery systems ................................. 633
   24.5.In vivo performance ................................... 634
   24.6.Conclusion ............................................ 638
   24.7.References ............................................ 639

25.Chitosan-polysaccharide blended nanoparticles for
   controlled drug delivery ................................... 644
      J.M. Alonso and F.M. Goycoolea, Universidad de
      Santiago de Compostela, Spain, and I. Higuera-Ciapara,
      Centro de Investigation en Alimentationу Desarrollo,
      Mexico

   25.1.Introduction .......................................... 644
   25.2.Polysaccharides in nanoparticle formation ............. 645
   25.3.Nanoparticles constituted by chitosan ................. 651
   25.4.Drug delivery properties and biopharmaceutical
        applications .......................................... 654
   25.5.Hybrid nanoparticles consisting of chitosan and
        other polysaccharides ................................. 656
   25.6.Future trends ......................................... 668
   25.7.Sources of further information and advice ............. 668
   25.8.Acknowledgements ...................................... 671
   25.9.References ............................................ 671

Part VI Biocompatibility of natural-based polymers

26.In vivo tissue responses to natural-origin biomaterials .... 683
      Т.С. Santos, A.P. Marques and R.L. Reis, 3B's
      Research Group, University of Minho, Portugal

   26.1.Introduction .......................................... 683
   26.2.Inflammation and foreign-body reactions to
        biomaterials .......................................... 684
   26.3.Role of host tissues in biomaterials implantation ..... 686
   26.4.Assessing the in vivo tissue responses to natural-
        origin biomaterials ................................... 690
   26.5.Controlling the in vivo tissue reactions to
        natural-origin biomaterials ........................... 693
   26.6.Final remarks ......................................... 695
   26.7.Acknowledgements ...................................... 695
   26.8.References ............................................ 695

27.Immunological issues in tissue engineering ................. 699
      N. Rotter, Ulm University, Germany

   27.1.Introduction .......................................... 699
   27.2.Immune reactions to biomaterials ...................... 699
   27.3.Host reactions related to the implant site ............ 701
   27.4.Immune reactions to different types of cells .......... 701
   27.5.Immune reactions to in vitro engineered tissues ....... 704
   27.6.Immune protection of engineered constructs ............ 705
   27.7.Strategies directed towards reactions to
        biomaterials .......................................... 706
   27.8.Strategies directed towards reactions to implanted
        cells ................................................. 707
   27.9.Future trends ......................................... 709
   27.10.References ........................................... 710

28.Biocompatibility of hyaluronic acid: From cell
   recognition to therapeutic applications .................... 716
      K. Ghosh, Children's Hospital and Harvard Medical
      School, USA

   28.1.Introduction .......................................... 716
   28.2.Native hyaluronan ..................................... 717
   28.3.Therapeutic implications of native hyaluronan ......... 721
   28.4.Engineered hyaluronan ................................. 722
   28.5.Implications for regenerative medicine ................ 727
   28.6.Conclusion ............................................ 728
   28.7.Future trends ......................................... 728
   28.8.References ............................................ 728

29.Biocompatibility of starch-based polymers .................. 738
      A.P. Marques, R.P. Pirraco and R.L. Reis, 3B's
      Research Group, University of Minho, Portugal

   29.1.Introduction .......................................... 738
   29.2.Starch-based polymers in the biomedical field ......... 740
   29.3.Cytocompatibility of starch-based polymers ............ 745
   29.4.Immunocompatibility of starch-based polymers .......... 748
   29.5.Conclusions ........................................... 752
   29.6.Acknowledgements ...................................... 753
   29.7.References ............................................ 753

30.Vascularization strategies in tissue engineering ........... 761
      M.I. Santos, and R.L. Reis, 3B's Research Group,
      University of Minho, Portugal

   30.1.Introduction .......................................... 761
   30.2.Biology of vascular networks - angiogenesis versus
        vasculogenesis ........................................ 761
   30.3.Vascularization: The hurdle of tissue engineering ..... 762
   30.4.Neovascularization of engineered bone ................. 763
   30.5.Strategies to enhance vascularization in engineered
        grafts ................................................ 765
   30.6.In vivo models to evaluate angiogenesis in tissue
        engineered products ................................... 774
   30.7.Future prospects ...................................... 776
   30.8.Sources of further information and advice ............. 776
   30.9.References ............................................ 776

Index ......................................................... 781


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 32,518 bytes.
Посещение N 2115 c 11.08.2009