Graduate texts in mathematics; 103 (New York, 2000). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLang S. Complex analysis. - 4th ed. - New York: Springer, 2000. - xiv, 485 p.: ill. - (Graduate texts in mathematics; 103). - ISBN 0-387-98592-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ........................................................ v
Prerequisites .................................................. ix


PART ONE


Basic Theory .................................................... 1

CHAPTER I Complex Numbers and Functions ......................... 3

§1. Definition .................................................. 3
§2. Polar Form .................................................. 8
§3. Complex Valued Functions ................................... 12
§4. Limits and Compact Sets .................................... 17
    Compact Sets ............................................... 21
§5. Complex Differentiability .................................. 27
§6. The Cauchy-Riemann Equations ............................... 31
§7. Angles Under Holomorphic Maps .............................. 33

CHAPTER II Power Series ........................................ 37

§1. Formal Power Series ........................................ 37
§2. Convergent Power Series .................................... 47
§3. Relations Between Formal and Convergent Series ............. 60
       Sums and Products ....................................... 60
       Quotients ............................................... 64
       Composition of Series ................................... 66
§4. Analytic Functions ......................................... 68
§5. Differentiation of Power Series ............................ 72
§6. The Inverse and Open Mapping Theorems ...................... 76
§7. The Local Maximum Modulus Principle ........................ 83

CHAPTER III Cauchy's Theorem, First Part ....................... 86

§1. Holomorphic Functions on Connected Sets .................... 86
       Appendix: Connectedness ................................. 92
§2. Integrals Over Paths ....................................... 94
§3. Local Primitive for a Holomorphic Function ................ 104
§4. Another Description of the Integral Along a Path .......... 110
§5. The Homotopy Form of Cauchy's Theorem ..................... 115
§6. Existence of Global Primitives. Definition of the
    Logarithm ................................................. 119
§7. The Local Cauchy Formula .................................. 125

CHAPTER IV Winding Numbers and Cauchy's Theorem ............... 133

§1. The Winding Number ........................................ 134
§2. The Global Cauchy Theorem ................................. 138
       Dixon's Proof of Theorem 2.5 (Cauchy's Formula) ........ 147
§3. Artin's Proof ............................................. 149

CHAPTER V Applications of Cauchy's Integral Formula ........... 156

§1. Uniform Limits of Analytic Functions ...................... 156
§2. Laurent Series ............................................ 161
§3. Isolated Singularities .................................... 165
       Removable Singularities ................................ 165
       Poles .................................................. 166
       Essential Singularities ................................ 168

CHAPTER VI Calculus of Residues ............................... 173

§1. The Residue Formula ....................................... 173
       Residues of Differentials .............................. 184
§2. Evaluation of Definite Integrals .......................... 191
       Fourier Transforms ..................................... 194
       Trigonometric Integrals ................................ 197
       Mellin Transforms ...................................... 199

CHAPTER VII Conformal Mappings ................................ 208

§1. Schwarz Lemma ............................................. 210
§2. Analytic Automorphisms of the Disc ........................ 212
§3. The Upper Half Plane ...................................... 215
§4. Other Examples ............................................ 220
§5. Fractional Linear Transformations ......................... 231

CHAPTER VIII Harmonic Functions ............................... 241

§1. Definition ................................................ 241
       Application: Perpendicularity .......................... 246
       Application: Flow Lines ................................ 248
§2. Examples .................................................. 252
§3. Basic Properties of Harmonic Functions .................... 259
§4. The Poisson Formula ....................................... 271
       The Poisson Integral as a Convolution .................. 273
§5. Construction of Harmonic Functions ........................ 276
§6. Appendix. Differentiating Under the Integral Sign ......... 286


PART TWO Geometric Function Theory ............................ 291


CHAPTER IX Schwarz Reflection ................................. 293

§1. Schwarz Reflection (by Complex Conjugation) ............... 293
§2. Reflection Across Analytic Arcs ........................... 297
§3. Application of Schwarz Reflection ......................... 303

CHAPTER X The Riemann Mapping Theorem ......................... 306

§1. Statement of the Theorem .................................. 306
§2. Compact Sets in Function Spaces ........................... 308
§3. Proof of the Riemann Mapping Theorem ...................... 311
§4. Behavior at the Boundary .................................. 314

CHAPTER XI Analytic Continuation Along Curves ................. 322

§1. Continuation Along a Curve ................................ 322
§2. The Dilogarithm ........................................... 331
§3. Application to Picard's Theorem ........................... 335


PART THREE Various Analytic Topics ............................ 337


CHAPTER XII Applications of the Maximum Modulus Principle
            and Jensen's Formula .............................. 339

§1. Jensen's Formula .......................................... 340
§2. The Picard-Borel Theorem .................................. 346
§3. Bounds by the Real Part, Borel-Caratheodory Theorem ....... 354
§4. The Use of Three Circles and the Effect of Small
    Derivatives ............................................... 356
       Hermite Interpolation Formula .......................... 358
§5. Entire Functions with Rational Values ..................... 360
§6. The Phragmen-Lindelof and Hadamard Theorems ............... 365

CHAPTER XIII Entire and Meromorphic Functions ................. 372

§1. Infinite Products ......................................... 372
§2. Weierstrass Products ...................................... 376
§3. Functions of Finite Order ................................. 382
§4. Meromorphic Functions, Mittag-Leffler Theorem ............. 387

CHAPTER XIV Elliptic Functions ................................ 391

§1. The Liouville Theorems .................................... 391
§2. The Weierstrass Function .................................. 395
§3. The Addition Theorem ...................................... 400
§4. The Sigma and Zeta Functions .............................. 403

CHAPTER XV The Gamma and Zeta Functions ....................... 408

§1. The Differentiation Lemma ................................. 409
§2. The Gamma Function ........................................ 413
       Weierstrass Product .................................... 413
       The Gauss Multiplication Formula (Distribution
       Relation) .............................................. 416
       The (Other) Gauss Formula .............................. 418
       The Mellin Transform ................................... 420
       The Stirling Formula ................................... 422
       Proof of Stirling's Formula ............................ 424
§3. The Lerch Formula ......................................... 431
§4. Zeta Functions ............................................ 433

CHAPTER XVI The Prime Number Theorem .......................... 440

§1. Basic Analytic Properties of the Zeta Function ............ 441
§2. The Main Lemma and its Application ........................ 446
§3. Proof of the Main Lemma ................................... 449
    Appendix .................................................. 453
§1. Summation by Parts and Non-Absolute Convergence ........... 453
§2. Difference Equations ...................................... 457
§3. Analytic Differential Equations ........................... 461
§4. Fixed Points of a Fractional Linear Transformation ........ 465
§5. Cauchy's Formula for С∞ Functions ......................... 467
§6. Cauchy's Theorem for Locally Integrable Vector Fields ..... 472
§7. More on Cauchy-Riemann .................................... 477

Bibliography .................................................. 479
Index ......................................................... 481


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 12,966 bytes.
Посещение N 1204 c 11.08.2009