Stochastic modelling and applied probability; 25 (New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFleming W.H. Controlled Markov processes and viscosity solutions / Fleming W.H., Soner H.M. - 2nd ed. - New York: Springer-Verlag, 2006. - xvii, 428 p. - (Stochastic modelling and applied probability; 25). - ISBN 0-387-26045-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface to Second Edition ...................................... xi
Preface ...................................................... xiii
Notation ....................................................... xv

I.   Deterministic Optimal Control .............................. 1

I.1.   Introduction ............................................. 1
I.2.   Examples ................................................. 2
I.3.   Finite time horizon problems ............................. 5
I.4.   Dynamic programming principle ............................ 9
I.5.   Dynamic programming equation ............................ 11
I.6.   Dynamic programming and Pontryagin's principle .......... 18
I.7.   Discounted cost with infinite horizon ................... 25
I.8.   Calculus of variations I ................................ 33
I.9.   Calculus of variations II ............................... 37
I.10.  Generalized solutions to Hamilton-Jacobi equations ...... 42
I.11.  Existence theorems ...................................... 49
I.12.  Historical remarks ...................................... 55

II.  Viscosity Solutions ....................................... 57

II.1.  Introduction ............................................ 57
II.2.  Examples ................................................ 60
II.3.  An abstract dynamic programming principle ............... 62
II.4.  Definition .............................................. 67
II.5.  Dynamic programming and viscosity property .............. 72
II.6.  Properties of viscosity solutions ....................... 73
II.7.  Deterministic optimal control and viscosity solutions ... 78
II.8.  Viscosity solutions: first order case ................... 83
II.9.  Uniqueness: first order case ............................ 89
II.10.  Continuity of the value function ....................... 99
II.11. Discounted cost with infinite horizon .................. 105
II.12. State constraint ....................................... 106
II.13. Discussion of boundary conditions ...................... 1ll
II.14. Uniqueness: first-order case ........................... 114
II.15. Pontryagin's maximum principle (continued) ............. 115
II.16. Historical remarks ..................................... 117

III. Optimal Control of Markov Processes: Classical
     Solutions ................................................ 119

III.1. Introduction ........................................... 119
III.2. Markov processes and their evolution operators ......... 120
III.3. Autonomous (time-homogeneous) Markov processes ......... 123
III.4. Classes of Markov processes ............................ 124
III.5. Markov diffusion processes on Mn; stochastic
       differential equations ................................. 127
III.6. Controlled Markov processes ............................ 130
III.7. Dynamic programming: formal description ................ 131
III.8. A Verification Theorem; finite time horizon ............ 134
III.9. Infinite Time Horizon .................................. 139
III.10.Viscosity solutions .................................... 145
III.11.Historical remarks ..................................... 148

IV.  Controlled Markov Diffusions in Mn ....................... 151

IV.1.  Introduction ........................................... 151
IV.2.  Finite time horizon problem ............................ 152
IV.3.  Hamilton-Jacobi-Bellman PDE ............................ 155
IV.4.  Uniformly parabolic case ............................... 161
IV.5.  Infinite time horizon .................................. 164
IV.6.  Fixed finite time horizon problem: Preliminary 
       estimates .............................................. 171
IV.7.  Dynamic programming principle .......................... 176
IV.8.  Estimates for first order difference quotients ......... 182
IV.9.  Estimates for second-order difference quotients ........ 186
IV.10. Generalized subsolutions and solutions ................. 190
IV.11. Historical remarks ..................................... 197

V.   Viscosity Solutions: Second-Order Case ................... 199

V.l.   Introduction ........................................... 199
V.2.   Dynamic programming principle .......................... 200
V.3.   Viscosity property ..................................... 205
V.4.   An equivalent formulation .............................. 210
V.5.   Semiconvex, concave approximations ..................... 214
V.6.   Crandall-Ishii Lemma ................................... 216
V.7.   Properties of U ........................................ 218
V.8.   Comparison ............................................. 219
V.9.   Viscosity solutions in Qq .............................. 222
V.10.  Historical remarks ..................................... 225

VI.  Logarithmic Transformations and Risk Sensitivity ......... 227

VI.l.  Introduction ........................................... 227
VI.2.  Risk sensitivity ....................................... 228
VI.3.  Logarithmic transformations for Markov diffusions ...... 230
VI.4.  Auxiliary stochastic control problem ................... 235
VI.5.  Bounded region Q ....................................... 238
VI.6.  Small noise limits ..................................... 239
VI.7.  H-infinity norm of a nonlinear system .................. 245
VI.8.  Risk sensitive control ................................. 250
VI.9.  Logarithmic transformations for Markov processes ....... 255
VI.10. Historical remarks ..................................... 259

VII. Singular Perturbations ................................... 261

VII.l. Introduction ........................................... 261
VII.2. Examples ............................................... 263
VII.3. Barles and Perthame procedure .......................... 265
VII.4. Discontinuous viscosity solutions ...................... 266
VII.5. Terminal condition ..................................... 269
VII.6. Boundary condition ..................................... 271
VII.7. Convergence ............................................ 272
VII.8. Comparison ............................................. 273
VII.9. Vanishing viscosity .................................... 280
VII.10.Large deviations for exit probabilities ................ 282
VII.11.Weak comparison principle in Q0 ........................ 290
VII.12.Historical remarks ..................................... 292

VIII.Singular Stochastic Control .............................. 293

VIII.l.Introduction ........................................... 293
VIII.2.Formal discussion ...................................... 294
VIII.3.Singular stochastic control ............................ 296
VIII.4.Verification theorem ................................... 299
VIII.5.Viscosity solutions .................................... 311
VIII.6.Finite fuel problem .................................... 317
VIII.7.Historical remarks ..................................... 319

IX.  Finite. Difference Numerical Approximations .............. 321

IX.1.  Introduction ........................................... 321
IX.2.  Controlled discrete time Markov chains ................. 322
IX.3.  Finite difference approximations to HJB equations ...... 324
IX.4.  Convergence of finite difference approximations. I ..... 331
IX.5.  Convergence of finite difference approximations. II .... 336
IX.6.  Historical remarks ..................................... 346

X.   Applications to Finance .................................. 347

X.l.   Introduction ........................................... 347
X.2.   Financial market model ................................. 347
X.3.   Merton portfolio problem ............................... 348
X.4.   General utility and duality ............................ 349
X.5.   Portfolio selection with transaction costs ............. 354
X.6.   Derivatives and the Black-Scholes price ................ 360
X.7.   Utility pricing ........................................ 362
X.8.   Super-replication with portfolio constraints ........... 364
X.9.   Buyer's price and the no-arbitrage interval ............ 365
X.10.  Portfolio constraints and duality ...................... 366
X.ll.  Merton problem with random parameters .................. 368
X.12.  Historical remarks ..................................... 372

XI.  Differential Games ....................................... 375

XI.l.  Introduction ........................................... 375
XI.2.  Static games ........................................... 376
XI.3.  Differential game formulation .......................... 377
XI.4.  Upper and lower value functions ........................ 381
XI.5.  Dynamic programming principle .......................... 382
XI.6.  Value functions as viscosity solutions ................. 384
XL 7.  Risk sensitive control limit game ...................... 387
XI.8.  Time discretizations ................................... 390
XI.9.  Strictly progressive strategies ........................ 392
XI.10. Historical remarks ..................................... 395

A. Duality Relationships ...................................... 397
В. Dynkin's Formula for Random Evolutions with Markov
   Chain Parameters ........................................... 399
С. Extension of Lipschitz Continuous Functions; Smoothing ..... 401
D. Stochastic Differential Equations: Random Coefficients ..... 403

References .................................................... 409
Index ......................................................... 425


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 13,417 bytes.
Посещение N 1940 c 11.08.2009