Preface ...................................................... XIII
List of Contributors ........................................... XV
1. Use of Oxide Ligands in Designing Catalytic Active Sites ..... 1
Edward L. Lee and Israel E. Wachs
1.1. Introduction ............................................ 1
1.2. Molecular Structural Determination of Supported Metal
Oxide Catalysts with In Situ Raman Spectroscopy ......... 3
1.3. Characterization of AlOx, TiOx, and ZrOx Surface-
Modified SiO2 ........................................... 3
1.4. Anchoring Site of Surface M1Ox Species on Supported
M2Ox/SiO2 ............................................... 5
1.5. Molecular Structure of Dehydrated Supported V2O5/SiO2
and V2O5/M2Ox/SiO2 Catalyst Systems ...................... 5
1.6. Molecular Structure of Dehydrated Supported
MoO3/SiO2 and MoO3/M2Ox/SiO2 Catalyst Systems ............ 8
1.7. Molecular Structure of Dehydrated Supported
Re2O7/SiO2 and Re2O7/M2Ox/SiO2 Catalyst Systems .......... 11
1.8. Electronic Structure of Dehydrated Supported
MOx/SiO2 and M2Ox / M2Ox/SiO2 Catalysts
via In Situ UV-Vis Spectroscopy ........................ 14
1.9. Determination of Surface Kinetic Parameters ............ 15
1.10.Redox Surface Reactivity of Model Supported M1Ox/SiO2
Catalysts .............................................. 16
1.11.Redox Surface Reactivity of Supported M2Ox/M2Ox/SiO2
Catalysts .............................................. 16
1.12.Conclusions ............................................ 18
References .................................................. 19
2. Optimal Design of Hierarchically Structured Porous
Catalysts ................................................... 25
Marc-Olivier Coppens and Gang Wang
2.1. Introduction ........................................... 25
2.1.1. Intrinsic Catalytic Activity and Selectivity:
the Atomic and the Nanoscale .................... 25
2.1.2. Catalyst Particle Size and Geometry:
A Question of Reactor Engineering ............... 26
2.1.3. Porous Catalyst Architecture and Optimization
Methods ......................................... 27
2.1.4. Learning from Nature ............................ 28
2.2. Optimizing Mesopore Connectivity and Shape ............. 30
2.2.1. Topology, Order, and Randomness ................. 30
2.2.2. Surface Roughness and Fractal Morphology ........ 32
2.3. Optimizing Catalysts by Macroscopic Distributions in
Activity ............................................... 34
2.4. Optimal Design of the Highway Network .................. 36
2.4.1. Novel Capabilities in Synthesizing
Hierarchical Pore Spaces ........................ 37
2.4.2. Theoretical Optimization Studies:
Opportunities for Optimal Design ................ 39
2.4.3. Application to the Design of a Bimodal Porous
Catalyst for NOx Abatement ...................... 47
2.5. Conclusions ............................................ 49
References .................................................. 50
3. Use of Dendrimers in Catalyst Design ........................ 59
Bert D. Chandler, Jeong-Kyu Lee, Harold H. Kung, and
Mayfair С. Kung
3.1. Introduction ........................................... 59
3.2. Modified Dendrimer Catalysts ........................... 60
3.2.1. Dendrimer Synthesis ............................. 60
3.2.2. Dendrimer Properties Important for Catalysis .... 61
3.2.3. Cooperative Catalysis ........................... 61
3.2.4. Site Isolation .................................. 64
3.3. Indirect Effects of Dendrimer Architecture ............. 66
3.3.1. Polarity Gradients .............................. 66
3.3.2. Steric and Diffusion Effects .................... 67
3.3.3. Comparing Dendrimers with Soluble Polymers ...... 68
3.3.4. Other Novel Dendrimer Effects ................... 70
3.4. Catalysis by Dendrimer Encapsulated Nanoparticles ...... 72
3.4.1. Nanoparticle Synthesis .......................... 72
3.4.2. Catalysis by Monometallic DENs .................. 73
3.4.3. Bimetallic Nanoparticles ........................ 73
3.4.4. Catalysis by Bimetallic DENs .................... 75
3.5. Dendrimer Templated Nanocages .......................... 77
3.6. Conclusion ............................................. 79
References .................................................. 79
4. Rational Design Strategies for Industrial Catalysts ......... 83
Saeed Alerasool, С.P. Kelkar, and Robert J. Farrauto
4.1. Introduction ........................................... 83
4.2. The First Stages Toward Commercialization of
a Catalyst ............................................. 84
4.3. Catalyst Discovery to Commercialization ................ 84
4.3.1. Catalyst Preparation ............................ 84
4.3.2. Catalyst Testing ................................ 85
4.3.3. Advanced Testing in Accordance to the Duty
Cycle ........................................... 86
4.3.4. Aging Studies ................................... 86
4.3.5. Kinetics ........................................ 87
4.3.6. Catalyst Scale-Up ............................... 88
4.3.7. Quality Control ................................. 89
4.4. Example 1: Automobile Pollution Abatement Catalyst
System ................................................. 89
4.4.1. The Quality of the Fuel ......................... 90
4.4.2. Base Metals Versus Precious Metals .............. 90
4.4.3. Particulate Versus Monolithic Structures ........ 91
4.4.4. The First Generation ............................ 91
4.4.5. The Final Test .................................. 92
4.5. Example 2: Dehydrogenation of Light Alkanes ............ 93
4.5.1. Understanding Reaction Kinetics,
Thermodynamics, and Process Constraints ......... 94
4.5.2. Formulating the Catalyst ........................ 95
4.5.3. Pilot Plant Testing ............................. 97
4.5.4. Field Testing ................................... 98
4.5.5. Commercial Launch ............................... 99
4.6. Example 3: Petroleum Refining - Fluid Catalytic
Cracking .............................................. 100
4.6.1. Understanding Deactivation ..................... 101
4.6.2. Age Distribution ............................... 105
4.6.3. Attrition ...................................... 105
4.6.4. Feed Effects ................................... 107
4.6.5. Scale-Up and Commercialization ................. 109
4.7. Conclusions ........................................... 109
References ................................................. 110
5. Chiral Modification of Catalytic Surfaces .................. 113
Zhen Ma and Francisco Zaera
5.1. Introduction .......................................... 113
5.2. Modification of Metal Surfaces by Cinchona Alkaloid
and Related Compounds ................................. 115
5.2.1. General Background ............................. 115
5.2.2. Ordering Within the Adsorbed Layers ............ 116
5.2.3. Modifier-Substrate Interactions ................ 118
5.2.4. Adsorption Geometry ............................ 120
5.2.5. Influence of Reaction Conditions ............... 122
5.2.6. Competitive Adsorption of Modifiers ............ 125
5.3. Modification of Metal Surfaces by Tartaric Acid and
Related Compounds ..................................... 127
5.3.1. General Background ............................. 127
5.3.2. Long-Range Order Within the Adsorbed Layers .... 127
5.3.3. Local Chirality on the Surface ................. 130
5.3.4. Identification of Chiral Sites on Surfaces ..... 132
5.4. Conclusions ........................................... 134
References ................................................. 136
6. Catalytic Nanomotors ....................................... 141
John Cibbs and Yiping Zhao
6.1. Introduction .......................................... 141
6.1.1. Biological Motors .............................. 142
6.1.2. Artificial Catalytic Nanomotors ................ 142
6.2. The Propulsion Mechanism of Catalytic Nanomotors ...... 244
6.2.1. Diffusiophoresis ............................... 144
6.2.2. Self-Electrophoresis ........................... 145
6.2.3. Bubble Propulsion .............................. 148
6.2.4. Interfacial Tension Gradients .................. 149
6.2.5. Bioelectrochemical Propulsion .................. 250
6.3. Advanced Design of Catalytic Nanomotors ............... 252
6.3.1. Dynamic Shadowing Growth ....................... 252
6.3.2. Rotary Si-Pt Nanorod Nanomotors ................ 252
6.3.3. L-Shaped Nanorod Nanomotors .................... 152
6.3.4. Rolling Nanospring ............................. 153
6.3.5. Hinged Nanorods ................................ 254
6.4. Applications, Challenges, and Perspectives ............ 257
References ................................................. 258
7. Rational Design and High-Throughput Screening of Metal
Open Frameworks for Gas Separation and Catalysis ........... 161
David Farrusseng and Claude Mirodatos
7.1. Introduction .......................................... 161
7.2. MOF General Features and Brief State of the Art ....... 162
7.2.1. A Building Block Construction .................. 162
7.2.2. Robust Open, Functionalized, and Sizeable
Frameworks ..................................... 262
7.2.3. MOFs Synthesis ................................. 264
7.2.4. Adsorption Properties of MOF ................... 266
7.2.5. Rational Strategies to Design MOFs for
Targeted Applications .......................... 167
7.3. Combinatorial Design of MOF for C02 Capture in a PSA
Process ............................................... 267
7.3.1. Process Specifications ......................... 267
7.3.2. General Properties of MOFs for CO2
Adsorption ..................................... 268
7.3.3. MOF Design for C02 Capture ..................... 272
7.3.3.1. "Structural" Route for Design
Strategy .............................. 272
7.3.3.2. "Functionalization" Route for
Design Strategy ....................... 272
7.3.4. Combinatorial Screening Methodology at
IRCELYON ....................................... 173
7.3.5. Combinatorial Synthesis ........................ 174
7.3.5.1. Protocol .............................. 174
7.3.5.2. Method Validation ..................... 274
7.3.5.3. Screening of Metal-BTC System ......... 275
7.3.6. Characterization of Representative Samples ..... 277
7.3.7. HT Testing and CO2-CH4 Isotherms of Selected
Samples ........................................ 278
7.4. MOF Design for Catalytic Application .................. 179
7.4.1. Properties of MOF in Catalysis ................. 279
7.4.1.1. Lewis Acid Catalysis .................. 180
7.4.1.2. Bronsted Acid Catalysis ............... 181
7.4.1.3. Basic and Enantioselective
Catalysis ............................. 182
7.4.1.4. С-С Coupling .......................... 183
7.4.1.5. Metal Catalysis ....................... 183
7.4.1.6. Wall Functionalization ................ 183
7. A.1.7. Postfunctionalization ................ 184
7.4.2. MOFs - Are They "Heterogenized" Catalysts or
Solid Catalysts? ............................... 185
7.4.2.1. Engineering of Structural Defects
in MOF ................................ 185
7.4.2.2. Probing Acid Centers by Alkylation
Reactions ............................. 185
7.4.2.3. Catalyst Characterization ............. 187
7.4.2.4. General Statements on MOF
Application for Catalysis ............. 188
7.5. Conclusion ............................................ 188
References ................................................. 189
8. Design of Bimetallic Catalysts: From Model Surfaces to
Supported Catalysts ........................................ 195
Jeffrey P. Bosco, Michael P. Humbert, and Jingguang
С. Chen
8.1. Introduction .......................................... 195
8.2. Experimental and Theoretical Methods .................. 196
8.2.1. Experimental Techniques ........................ 196
8.2.2. DFT Modeling ................................... 199
8.3. Results and Discussion ................................ 199
8.3.1. UHV and DFT Studies on Pt-Ni Model Surfaces .... 199
8.3.1.1. Adsorption and Desorption of
Hydrogen .............................. 200
8.3.1.2. Disproportionation and
Hydrogenation of Cyclohexene .......... 202
8.3.2. Characterization and Reactor Studies of
Supported Pt-Ni Catalysts ...................... 205
8.3.2.1. ТЕМ and EXAFS Characterization
of Ni/Pt/Al2O3 Catalysts .............. 205
8.4. Conclusions ........................................... 211
References ................................................. 211
9. Self-Assembled Materials for Catalysis ..................... 213
Kake Zhu, Donghai Wang, and Jun Liu
9.1. Introduction .......................................... 213
9.2. Mesocale Design ....................................... 214
9.2.1. Inclusion of Heteroatoms ....................... 216
9.2.1.1. Acid Sites ............................ 216
9.2.1.2. Dispersed Metal Oxides ................ 219
9.2.2. Embedded Nanoparticles ......................... 220
9.2.3. Nonsiliceous Mesoporous Materials .............. 221
9.2.3.1. Molecule Self-Assembly to Mesoporous
Catalysts ............................. 222
9.2.3.2. Nanoparticles Self-Assembly to
Mesoporous Catalysts .................. 222
9.2.4. Self-Assembly of Zeolite Seeds into
Mesophase ...................................... 223
9.2.5. Organic Functional Groups as Catalysts ......... 224
9.3. Designing Catalysts at the Nanoparticle Surfaces ...... 225
9.3.1. Polyoxometalates: Nanoparticles with Cations ... 225
9.3.2. Dendrimer-Stabilized Metal Nanoparticles ....... 226
9.4. Perspectives .......................................... 226
References ................................................. 227
10.Theory-Aided Catalyst Design ............................... 231
Matthew Neurock
10.1.Introduction .......................................... 231
10.2.Catalytic Descriptors ................................. 234
10.2.1.Electronic Descriptors ......................... 234
10.2.2.Energetic Descriptors .......................... 235
10.2.3.Adsorption Energies or Binding Energies ........ 236
10.2.4.High-Throughput Screening ...................... 238
10.3.High-Throughput Simulation and Design ................. 242
10.3.1.NO Decomposition ............................... 244
10.3.2.Vinyl Acetate (VAM) Synthesis .................. 249
10.4.Controlled Patterning ................................. 252
10.5.Catalyst Synthesis and Stability ...................... 252
10.6.Conclusions ........................................... 253
References ................................................. 254
11.Use of In Situ XAS Techniques for Catalysts'
Characterization and Design ................................ 259
Christophe Ceantet and Jean-Marc M. Millet
11.1.Introduction .......................................... 259
11.2.The X-Ray Absorption Techniques ....................... 260
11.2.1.Principles and Feasibility ..................... 260
11.2.2.Data Acquisition ............................... 262
11.2.3.Spectral Analysis and Interpretations .......... 263
11.3.Recent Applications of X-Ray Absorption Techniques
to the Design of Heterogeneous Catalysts .............. 265
11.3.1.Time Resolution ................................ 265
11.3.2.High-Resolution XANES .......................... 271
11.3.3.High Detection Sensitivity ..................... 277
11.3.4.Spatial Resolution ............................. 278
11.3.5.Coupling of Techniques ......................... 280
11.4.Perspective ........................................... 285
11.4.1.Time-Resolved Ultrafast X-Ray Absorption
Spectroscopy ................................... 286
11.4.2.X-Ray Emission Spectroscopy (XES) and
Resonant Inelastic X-Ray Scattering
Spectroscopy (RIXS) ............................ 287
11.5.Conclusions ........................................... 290
References ................................................. 291
12.Catalyst Design Through Dual Templating .................... 295
Moises A. Carreon and Vadim V. Guliants
12.1.Introduction .......................................... 295
12.2.Surfactant-Assisted Self-Assembly of Mesoporous
Metal Oxides .......................................... 297
12.2.1.Fundamentals ................................... 297
12.2.2.Thermal Stability Considerations ............... 297
12.2.3.Mesostructuring via Evaporation-Induced Self-
Assembly ....................................... 299
12.3.Colloidal Sphere Templating of Macroporous Metal
Oxides ................................................ 301
12.4.Dual Templating of Metal Oxides ....................... 303
12.5.Catalytic Applications ................................ 305
12.5.1.Mesoporous Metal Oxides ........................ 305
12.5.2.Macroporous Metal Oxides ....................... 310
12.5.3.Metal Oxides Obtained via Dual Templating ...... 311
12.6.Concluding Remarks .................................... 312
References .................................................... 313
Index ......................................................... 315
|