Chemical bonding at surfaces and interfaces (Amsterdam; Oxford, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChemical bonding at surfaces and interfaces / ed. by Nilsson A., Pettersson L.G.M., Nørskov J.K. - Amsterdam; Oxford: Elsevier, 2008. - xii, 520 p.: ill. - ISBN 978-0-444-52837-7
 

Оглавление / Contents
 
Preface ........................................................ xi
   Anders Nilsson, Lars G.M. Pettersson and Jens K. Norskov

1. Surface Structure ............................................ 1
      D.P. Woodruff   
   1. Why surface structure? .................................... 1
   2. Methods of surface adsorbate structure determination ...... 2
      2.1. General comments ..................................... 2
      2.2. Electron scattering .................................. 3
      2.3. X-ray scattering ..................................... 6
      2.4. Ion scattering ....................................... 8
      2.5. Spectroscopic methods and scanning probe
           microscopy ........................................... 9
   3. Adsorbate-induced surface reconstruction ................. 11
   4. Molecular adsorbates - local sites, orientations and
      intramolecular bondlengths ............................... 19
      4.1. General issues and the case of CO on metals ......... 19
      4.2. Simple hydrocarbons on metals ....................... 21
      4.3. Carboxylates on metals .............................. 26
      4.4. Other substrates: molecules on Si ................... 33
   5. Chemisorption bondlengths ................................ 38
      5.1. Metal surfaces ...................................... 38
      5.2. Oxide surfaces ...................................... 44
   6. Conclusions .............................................. 48

2. Adsorbate Electronic Structure and Bonding on Metal
   Surfaces .................................................... 57
      Anders Nilsson and Lars G.M. Pettersson
   1. Introduction ............................................. 57
   2. Probing the electronic structure ......................... 58
   3. Adsorbate electronic structure and chemical bonding ...... 63
   4. Adsorbate systems ........................................ 68
   5. Radical atomic adsorption ................................ 69
      5.1. The electronic structure of N on Cu(100) ............ 70
      5.2. Chemical bonding of atomic adsorbates ............... 75
   6. Diatomic molecules ....................................... 79
      6.1. N2 adsorbed on Ni(100) .............................. 80
      6.2. CO adsorbed on Ni(100) .............................. 91
      6.3. CO adsorbed on Cu(100) and other metals ............. 97
      6.4. CO adsorbed in different sites ...................... 99
      6.5. Coadsorption of CO and К on Ni(100) ................ 101
   7. Unsaturated hydrocarbons ................................ 103
      7.1. Ethylene (C2H4) adsorbed on Ni(l10) and Cu(110) .... 104
      7.2. Benzene on Ni and Cu surfaces ...................... 1ll
      7.3. Bond energetics and rehybridization from spin-
           uncoupling ......................................... 113
   8. Saturated hydrocarbons .................................. 119
      8.1. n-Octane adsorbed on Cu(l10) ....................... 120
      8.2. Difference between octane on Ni and Cu
           surfaces ........................................... 126
   9. Lone pair interactions .................................. 127
      9.1. Water adsorption on Pt and Cu surfaces ............. 127
      9.2. Adsorption of ammonia and the amino group in
           glycine on Cu(l10) ................................. 131
   10.Summary ................................................. 134

3. The Dynamics of Making and Breaking Bonds at Surfaces ...... 143
      A.C. Luntz
   1. Introduction ............................................ 143
   2. Theoretical background .................................. 146
      2.1. Adiabatic dynamics (Born-Oppenheimer
           approximation) ..................................... 146
      2.2. Generic PES topologies ............................. 149
      2.3. Dynamics vs. kinetics .............................. 152
           2.3.1. Direct dissociation ......................... 153
           2.3.2. Precursor-mediated dissociation ............. 156
      2.4. Detailed balance ................................... 157
      2.5. Lattice coupling ................................... 158
           2.5.1. Energy transfer in adsorption/scattering .... 159
           2.5.2. Lattice coupling in direct molecular
                  dissociation ................................ 163
      2.6. Non-adiabatic dynamics ............................. 164
           2.6.1. Hot electrons from chemistry ................ 165
           2.6.2. Chemistry from hot electrons ................ 169
   3. Experimental background ................................. 172
      3.1. Experimental techniques ............................ 173
      3.2. Typical measurements ............................... 175
           3.2.1. Rate measurements ........................... 175
           3.2.2. Adsorption-trapping and sticking ............ 176
           3.2.3. Desorption .................................. 179
           3.2.4. Scattering .................................. 180
           3.2.5. Initial state preparation ................... 181
           3.2.6. Photochemistry/femtochemistry ............... 181
           3.2.7. Single molecule chemistry (STM) ............. 182
   4. Processes ............................................... 182
      4.1. Atomic adsorption/desorption/scattering ............ 183
           4.1.1. Ar/Pt(lll) .................................. 183
           4.1.2. H/Cu(lll) ................................... 186
      4.2. Molecular adsorption/desorption/scattering ......... 188
           4.2.1. NO/Ag(ll1) .................................. 188
           4.2.2. NO/Pt(l11) .................................. 195
      4.3. Direct dissociation/associative desorption ......... 198
           4.3.1. Activated dissociation ...................... 198
           4.3.2. Weakly activated dissociation ............... 214
           4.3.3. Non-activated dissociation .................. 216
      4.4. Precursor-mediated dissociation/associative
           desorption ......................................... 219
           4.4.1. 02/Pt(lll) .................................. 219
      4.5. Direct and precursor-mediated dissociation ......... 223
           4.5.1. N2/W(100) ................................... 223
           4.5.2. NH3/Ru(0001) ................................ 226
      4.6. Langmuir-Hinschelwood chemistry .................... 227
           4.6.1. (O + CO)/Pt(l11) ............................ 227
      4.7. Eley-Rideal/Hot atom chemistry ..................... 230
           4.7.1. H + H/Cu(lll) ............................... 230
      4.8. Hot electron chemistry ............................. 235
           4.8.1. Photochemistry/femtochemistry ............... 235
           4.8.2. Single molecule chemistry ................... 240
   5. Summary and outlook ..................................... 242

4. Heterogeneous Catalysis .................................... 255
      T. Bligaard and J.K. Nørskov
   1. Introduction ............................................ 255
   2. Factors determining the reactivity of a transition
      metal surface ........................................... 256
   3. Trends in adsorption energies on transition metal
      surfaces ................................................ 257
   4. The d-band model ........................................ 259
      4.1. One-electron energies and bond energy trends ....... 259
      4.2. The Newns-Anderson model ........................... 262
   5. Trends in chemisorption energies ........................ 267
      5.1. Variations in adsorption energies from one
           metal to the next .................................. 267
      5.2. Ligand effects in adsorption - changing the d
           band center ........................................ 269
           5.2.1. Variations due to changes in surface
                  structure ................................... 270
           5.2.2. Variations due to alloying .................. 273
      5.3. Ensemble effects in adsorption - the
           interpolation principle ............................ 275
   6. Trends in activation energies for surface reactions ..... 278
      6.1. Electronic effects in surface reactivity ........... 279
      6.2. Geometrical effects in surface reactivity .......... 281
   7. Bronsted-Evans-Polanyi relationships in heterogeneous
      catalysis ............................................... 283
      7.1. Correlations from DFT calculations ................. 283
      7.2. Universal relationships ............................ 285
   8. Activation barriers and rates ........................... 287
      8.1. Transition state theory ............................ 288
      8.2. Variational transition state theory and 
           recrossings ........................................ 291
      8.3. Harmonic transition state theory (HTST) ............ 292
   9. Variations in catalytic rates - volcano relations ....... 297
      9.1. Dissociation rate-determined model ................. 298
      9.2.  A Le Chatelier-like principle for heterogeneous 
            catalysis ......................................... 302
      9.3. Including molecular precursor adsorption ........... 303
      9.4. Sabatier analysis .................................. 305
      9.5. A realistic desorption model ....................... 307
      9.6. Database of chemisorption energies ................. 311
   10 The optimization and design of catalyst through 
      modeling ................................................ 312
      10.1.The low-temperature water gas shift (WGS) 
           reaction ........................................... 313
      10.2.Methanation ........................................ 313
   11 Conclusions and outlook ................................. 316

5  Semiconductor Surface Chemistry ............................ 323
   Stacey F. Bent
   1. Inroduction ............................................. 323
   2. Structure of semiconductor surfaces ..................... 325
      2.1. Silicon surface structure .......................... 326
      2.2. Germanium surface structure ........................ 330
   3. Surface oxidation ....................................... 331
      3.1. Silicon ............................................ 331
      3.2. Germanium .......................................... 333
   4. Passivation of semiconductor surfaces ................... 334
      4.1. Silicon passivation ................................ 334
           4.4.1. Hydride termination of silicon .............. 334
      4.2. Germanium passivation .............................. 335
           4.2.1. Sulfide passivation of germanium ............ 336
           4.2.2. Chloride passivation of germanium ........... 337
           4.2.3. Hydride termination of germanium ............ 337
   5. Reactions at passivated semiconductor surfaces .......... 339
      5.1. Organic functionalization of semiconductor 
           surface ............................................ 339
      5.2. Reaction with passivated silicon (Si-H and
           Si-Cl) ............................................. 339
           5.2.1. Hydrosilylation ............................. 339
           5.2.2. Grignard reactions on silicon ............... 345
      5.3. Reaction with passivated germanium (Ge-H and
           Ge-Cl) ............................................. 346
           5.3.1. Grignard reactions on germanium ............. 347
           5.3.2. Hydrogermylation ............................ 348
           5.3.3. Alkanethiol reactions on germanium .......... 349
      5.4. Reaction with compound semiconductors .............. 350
   6. Adsorption of organic molecules under vacuum
      conditions .............................................. 351
      6.1. Silicon surface chemistry .......................... 352
           6.1.1. Cycloaddition reaction on Si(100)-2 x 1 ..... 352
           6.1.2. Heterocycloadditions ........................ 361
           6.1.3. Nucleophilic/electrophilic reactions ........ 362
      6.2. Germanium surface chemistry ........................ 369
           6.2.1. Cycloaddition reactions on Ge(100)-2 x 1 .... 370
           6.2.2. Heterocycloadditions ........................ 372
           6.2.3. Nucleophilic/electrophilic reactions ........ 374
           6.2.4. Multiple-layer reactions .................... 376
      6.3. Summary of concepts in organic functionalization ... 378

6  Surface Electrochemistry ................................... 397
   Peter Strasser, Hirohito Ogasawara   
   1. Introduction ............................................ 397
   2. Special features of electrochemical reactions ........... 398
      2.1. Electrochemical current and potential .............. 399
      2.2. Electrochemical interfaces ......................... 404
      2.3. Models of electrochemical electron transfer
           kinetics ........................................... 406
   3. Electrochemistry at the molecular scale ................. 412
      3.1. Surface structure .................................. 412
      3.2. Bonding of ions .................................... 413
      3.3. Bonding of water ................................... 415
      3.4. Experimental aspects of current/voltage 
           properties ......................................... 416
   4. Electrocatalytic reaction processes ..................... 418
      4.1. The electrocatalytic reduction of oxygen ........... 420
           4.1.1. Background .................................. 420
           4.1.2. Mechanistic pathways ........................ 422
           4.1.3. Electroreduction of oxygen on Pt and Pt 
                  alloys ...................................... 423
           4.1.4. Recent quantum chemical studies of the ORR 
                  mechanism ................................... 425
           4.1.5. State-of-the-art ORR electrocatalyst
                  concepts .................................... 431
      4.2. The electrochemical oxidation of small organic
           molecules .......................................... 435
           4.2.1. The electrooxidation of carbon monoxide ..... 438
           4.2.2. The electrooxidation of formic acid and
                  methanol .................................... 444
      5. Summary and outlook .................................. 448

7. Geochemistry of Mineral Surfaces and Factors Affecting 
   Their Chemical Reactivity .............................. 457
   Gordon E. Brown, Jr., Thomas P. Trainor, Anne M. Chaka
   1. Introduction ............................................ 457
   2. Environmental interfaces ................................ 461
      2.1. Common minerals in Earth's crust, soils, and
           atmosphere, weathering mechanisms and products, and
           less common minerals that contain or adsorb 
           environmental contaminants ......................... 461
      2.2. Solubilities of Al- and Fe(III)-oxides and Al and 
           Fe(III)-(oxy)hydroxides ............................ 466
      2.3. Dissolution mechanisms at feldspar-water 
           interfaces ......................................... 469
      2.4. The nature of metal oxide-aqueous solution 
           interfaces - some basics ........................... 472
   3. Factors affecting the chemical reactivity of mineral
      surfaces ................................................ 478
      3.1. The reaction of water vapor with metal oxide
           surfaces - surface science and theoretical 
           studies of simplified model systems illustrating
           effects of defect density and adsorbate
           cooperative effects ................................ 479
      3.2. Grazing incidence EXAFS spectroscopic studies of
           Pb(II)aq adsorption on metal oxide surfaces -
           effect of differences in surface functional 
           groups on reactivity ............................... 484
      3.3. The structure of hydrated metal oxide surfaces
           from X-ray diffraction studies ..................... 488
      3.4. X-ray standing wave studies of the electrical 
           double layer at solid-aqueous solution interfaces
           and in situ measurements of surface reactivity ..... 496
      3.5. Effect of organic coatings and microbial biofilms
           on metal oxide surface reactivity - X-ray 
           standing wave studies of metal ion partitioning 
           between coating and surface ........................ 499
   4. Conclusions ............................................. 504

Index ......................................................... 511


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 20,822 bytes.
Посещение N 1564 c 11.08.2009