Cederberg J. A course in modern geometries (New York, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCederberg J. A course in modern geometries. - 2nd ed. - New York: Springer, 2005. - xii, 442 p.: ill. - ISBN 978-0-387-98972-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface to the Second Edition ................................... v
Preface to the First Edition ................................. xiii

1. Axiomatic Systems and Finite Geometries ...................... 1
   1.1. Gaining Perspective ..................................... 1
   1.2. Axiomatic Systems ....................................... 2
   1.3. Finite Projective Planes ................................ 9
   1.4. An Application to Error-Correcting Codes ............... 18
   1.5. Desargues' Configurations .............................. 25
   1.6. Suggestions for Further Reading ........................ 30
2. Non-Euclidean Geometry ...................................... 33
   2.1. Gaining Perspective .................................... 33
   2.2. Euclid's Geometry ...................................... 34
   2.3. Non-Euclidean Geometry ................................. 47
   2.4. Hyperbolic Geometry—Sensed Parallels ................... 51
   2.5. Hyperbolic Geometry—Asymptotic Triangles ............... 61
   2.6. Hyperbolic Geometry—Saccheri Quadrilaterals ............ 68
   2.7. Hyperbolic Geometry—Area of Triangles .................. 74
   2.8. Hyperbolic Geometry—Ultraparallels ..................... 80
   2.9. Elliptic Geometry ...................................... 84
   2.10.Significance of the Discovery of Non-Euclidean
        Geometries ............................................. 93
   2.11.Suggestions for Further Reading ........................ 93
3. Geometric Transformations of the Euclidean Plane ............ 99
   3.1. Gaining Perspective .................................... 99
   3.2. Exploring Line and Point Reflections .................. 103
   3.3. Exploring Rotations and Finite Symmetry Groups ........ 108
   3.4. Exploring Translations and Frieze Pattern
        Symmetries ............................................ 116
   3.5. An Analytic Model of the Euclidean Plane .............. 121
   3.6. Transformations of the Euclidean Plane ................ 129
   3.7. Isometries ............................................ 136
   3.8. Direct Isometries ..................................... 144
   3.9. Indirect Isometries ................................... 154
   3.10.Frieze and Wallpaper Patterns ......................... 165
   3.11.Exploring Plane Tilings ............................... 173
   3.12.Similarity Transformations ............................ 183
   3.13.Affine Transformations ................................ 190
   3.14.Exploring 3-D Isometries .............................. 198
   3.15.Suggestions for Further Reading ....................... 207
4. Projective Geometry ........................................ 213
   4.1. Gaining Perspective ................................... 213
   4.2. The Axiomatic System and Duality ...................... 214
   4.3. Perspective Triangles ................................. 221
   4.4. Harmonic Sets ......................................... 223
   4.5. Perspectivities and Projectivities .................... 229
   4.6. Conies in the Projective Plane ........................ 240
   4.7. An Analytic Model for the Projective Plane ............ 250
   4.8. The Analytic Form of Projectivities ................... 258
   4.9. Cross Ratios .......................................... 264
   4.10.Collineations ......................................... 270
   4.11.Correlations and Polarities ........................... 283
   4.12.Subgeometries of Projective Geometry .................. 298
   4.13.Suggestions for Further Reading ....................... 311
5. Chaos to Symmetry: An Introduction to Fractal Geometry ..... 315
   5.1. A Chaotic Background .................................. 316
   5.2. Need for a New Geometric Language ..................... 334
   5.3. Fractal Dimension ..................................... 347
   5.4. Iterated Function Systems ............................. 360
   5.5. Finally—What Is a Fractal? ............................ 377
   5.6. Applications of Fractal Geometry ...................... 380
   5.7. Suggestions for Further Reading ....................... 382

Appendices .................................................... 389

   A. Euclid's Definitions, Postulates, and the First 30
      Propositions of Elements, Book I ........................ 389
   В. Hilbert's Axioms for Plane Geometry ..................... 395
   С. Birkhoff s Postulates for Euclidean Plane Geometry ...... 399
   D. The SMSG Postulates for Euclidean Geometry .............. 401
   E. Some SMSG Definitions for Euclidean Geometry ............ 405
   F. The ASA Theorem ......................................... 409

References .................................................... 413
Index ......................................................... 427


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 8,417 bytes.
Посещение N 1888 c 11.08.2009