Betounes D. Differential equations (New York; Berlin, 2001). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBetounes D. Differential equations: Theory and applications with Maple. - New York; Berlin; Heidelberg: Springer, 2001. - xiv, 680 p.: ill + 1 CD-ROM. - ISBN 0-387-95140-7
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ......................................................... v

1. Introduction ................................................. 1
   1.1. Examples of Dynamical Systems ........................... 1
   1.2. Vector Fields and Dynamical Systems .................... 14
   1.3. Nonautonomous Systems .................................. 23
   1.4. Fixed Points ........................................... 26
   1.5. Reduction to lst-Order, Autonomous ..................... 27
   1.6. Summary ................................................ 32
2. Techniques, Concepts, and Examples .......................... 33
   2.1. Euler's Numerical Method ............................... 34
        2.1.1. The Geometric View .............................. 34
        2.1.2. The Analytical View ............................. 36
   2.2. Gradient Vector Fields ................................. 39
   2.3. Fixed Points and Stability ............................. 45
   2.4. Limit Cycles ........................................... 51
   2.5. The Two-Body Problem ................................... 55
        2.5.1. Jacobi Coordinates .............................. 57
        2.5.2. The Central Force Problem ....................... 59
   2.6. Summary ................................................ 72
3. Existence and Uniqueness: The Flow Map ...................... 75
   3.1. Picard Iteration ....................................... 78
   3.2. Existence and Uniqueness Theorems ...................... 82
   3.3. Maximum Interval of Existence .......................... 92
   3.4. The Flow Generated by a Time-Dependent Vector Field .... 95
   3.5. The Flow for Autonomous Systems ....................... 104
   3.6. Summary ............................................... 112
4. One-Dimensional Systems .................................... 115
   4.1. Autonomous, One-Dimensional Systems ................... 116
        4.1.1. Construction of the Flow for 1-D,
               Autonomous Systems ............................. 123
   4.2. Separable Differential Equations ...................... 128
   4.3. Integrable Differential Equations ..................... 135
   4.4. Homogeneous Differential Equations .................... 147
   4.5. Linear and Bernoulli Differential Equations ........... 151
   4.6. Summary ............................................... 155
5. Linear Systems ............................................. 157
   5.1. Existence and Uniqueness for Linear Systems ........... 162
   5.2. The Fundamental Matrix and the Flow ................... 165
   5.3. Homogeneous, Constant Coefficient Systems ............. 174
   5.4. The Geometry of the Integral Curves ................... 180
        5.4.1. Real Eigenvalues ............................... 182
        5.4.2. Complex Eigenvalues ............................ 192
   5.5. Canonical Systems ..................................... 211
        5.5.1. Diagonalizable Matrices ........................ 214
        5.5.2. Complex Diagonalizable Matrices ................ 217
        5.5.3. The Nondiagonalizable Case: Jordan Forms ....... 219
   5.6. Summary ............................................... 227
6. Linearization and Transformation ........................... 231
   6.1. Linearization ......................................... 231
   6.2. Transforming Systems of DEs ........................... 247
        6.2.1. The Spherical Coordinate Transformation ........ 253
        6.2.2. Some Results on Differentiable Equivalence ..... 257
   6.3. The Linearization and Flow Box Theorems ............... 266
7. Stability Theory ........................................... 275
   7.1. Stability of Fixed Points ............................. 276
   7.2. Linear Stability of Fixed Points ...................... 279
        7.2.1. Computation of the Matrix Exponential for
               Jordan Forms ................................... 280
   7.3. Nonlinear Stability ................................... 290
   7.4. Liapunov Functions .................................... 292
   7.5. Stability of Periodic Solutions ....................... 303
8. Integrable Systems ......................................... 323
   8.1. First Integrals (Constants of the Motion) ............. 324
   8.2. Integrable Systems in the Plane ....................... 329
   8.3. Integrable Systems in 3-D ............................. 334
   8.4. Integrable Systems in Higher Dimensions ............... 348
9. Newtonian Mechanics ........................................ 361
   9.1. The N-Body Problem .................................... 362
        9.1.1. Fixed Points ................................... 365
        9.1.2. Initial Conditions ............................. 366
        9.1.3. Conservation Laws .............................. 366
        9.1.4. Stability of Conservative Systems .............. 374
   9.2. Euler's Method and the N-body Problem ................. 384
        9.2.1. Discrete Conservation Laws ..................... 392
   9.3. The Central Force Problem Revisited ................... 401
        9.3.1. Effective Potentials ........................... 404
        9.3.2. Qualitative Analysis ........................... 405
        9.3.3. Linearization and Stability .................... 409
        9.3.4. Circular Orbits ................................ 410
        9.3.5. Analytical Solution ............................ 412
   9.4. Rigid-Body Motions .................................... 424
        9.4.1. The Rigid-Body Differential Equations .......... 432
        9.4.2. Kinetic Energy and Moments of Inertia .......... 438
        9.4.3. The Degenerate Case ............................ 446
        9.4.4. Euler's Equation ............................... 447
        9.4.5. The General Solution of Euler's Equation ....... 451
10.Motion on a Submanifold .................................... 463
   10.1.Motion on a Stationary Submanifold .................... 464
        10.1.1.Motion Constrained to a Curve .................. 471
        10.1.2.Motion Constrained to a Surface ................ 476
   10.2.Geometry of Submanifolds .............................. 484
   10.3.Conservation of Energy ................................ 493
   10.4.Fixed Points and Stability ............................ 495
   10.5.Motion on a Given Curve ............................... 502
   10.6.Motion on a Given Surface ............................. 513
        10.6.1.Surfaces of Revolution ......................... 520
        10.6.2.Visualization of Motion on a Given Surface ..... 526
   10.7 Motion Constrained to a Moving Submanifold ............ 531

11.Hamiltonian Systems ........................................ 541
   11.1.1-Dimensional Hamiltonian Systems ..................... 544
        11.1.1.Conservation of Energy ......................... 547
   11.2.Conservation Laws and Poisson Brackets ................ 551
   11.3.Lie Brackets and Arnold's Theorem ..................... 565
        11.3.1.Arnold's Theorem ............................... 567
   11.4.Liouville's Theorem ................................... 582

A. Elementary Analysis ........................................ 589
   A.l. Multivariable Calculus ................................ 589
   A.2. The Chain Rule ........................................ 595
   A.3. The Inverse and Implicit Function Theorems ............ 596
   A.4. Taylor's Theorem and The Hessian ...................... 602
   A.5. The Change of Variables Formula ....................... 606
В. Lipschitz Maps and Linearization ........................... 607
   B.l. Norms ................................................. 608
   B.2. Lipschitz Functions ................................... 609
   B.3. The Contraction Mapping Principle ..................... 613
   B.4. The Linearization Theorem ............................. 619
С. Linear Algebra ............................................. 633
   C.l. Vector Spaces and Direct Sums ......................... 633
   C.2. Bilinear Forms ........................................ 636
   C.3. Inner Product Spaces .................................. 638
   C.4. The Principal Axes Theorem ............................ 642
   C.5. Generalized Eigenspaces ............................... 645
   C.6. Matrix Analysis ....................................... 656
        C.6.1.  Power Series with Matrix Coefficients ......... 662
D. CD-ROM Contents ............................................ 665

Bibliography .................................................. 669

Index ......................................................... 675


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 12,384 bytes.
Посещение N 1922 c 11.08.2009