Progress in mathematics; 272 (Basel, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBarreira L. Dimension and recurrence in hyperbolic dynamics / ed. by Bass H., Oesterle' J., Weinstein A. - Basel: Birkhäuser, 2008. - xiv, 300 p. - (Progress in mathematics; 272). - ISBN 978-3-7643-8881-2
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii

1. Introduction ................................................. 1
   1.1. Dimension and recurrence in hyperbolic dynamics ......... 1
   1.2. Contents of the book: a brief tour ...................... 3
2. Basic Notions ................................................ 7
   2.1. Dimension theory ........................................ 7
   2.2. Ergodic theory ......................................... 13
   2.3. Thermodynamic formalism ................................ 14

I Dimension Theory ............................................. 17

3. Dimension Theory and Thermodynamic Formalism ................ 19
   3.1. Dimension theory of geometric constructions ............ 19
   3.2. Thermodynamic formalism and dimension theory ........... 24
        3.2.1. Thermodynamic formalism for symbolic dynamics ... 24
        3.2.2. Dimension of limit sets of geometric
               constructions ................................... 27
   3.3. Nonstationary geometric constructions .................. 31
        3.3.1. Nonadditive thermodynamic formalism ............. 31
        3.3.2. Dimension of limit sets of nonstationary
               constructions ................................... 35
4. Repellers and Hyperbolic Sets ............................... 41
   4.1. Dimension of repellers of conformal maps ............... 41
   4.2. Hyperbolic sets and Markov partitions .................. 49
        4.2.1. Basic notions and product structure ............. 49
        4.2.2. Boundaries of Markov partitions ................. 52
        4.2.3. Product structure of Gibbs measures ............. 55
   4.3. Dimension of hyperbolic sets of conformal maps ......... 59
   4.4. Dimension for nonconformal maps: brief notes ........... 64
5. Measures of Maximal Dimension ............................... 67
   5.1. Basic notions and basic properties ..................... 67
   5.2. Existence of measures of maximal dimension ............. 70

II. Multifractal Analysis: Core Theory ......................... 79

6. Multifractal Analysis of Equilibrium Measures ............... 81
   6.1. Dimension spectrum for repellers ....................... 81
   6.2. Dimension spectrum for hyperbolic sets ................. 93
7. General Concept of Multifractal Analysis ................... 101
   7.1. General concept and basic notions ..................... 101
   7.2. The notion of u-dimension ............................. 103
   7.3. Multifractal analysis of u-dimension .................. 108
   7.4. Domain of the spectra ................................. 1ll
   7.5. Existence of spectra with prescribed data ............. 113
   7.6. Nondegeneracy of the spectra .......................... 120
8. Dimension of Irregular Sets ................................ 127
   8.1. Introduction .......................................... 127
   8.2. Irregular sets and distinguishing measures ............ 130
   8.3. Existence of distinguishing measures .................. 138
   8.4. Topological Markov chains ............................. 139
   8.5. Repellers ............................................. 141
   8.6. Hyperbolic sets ....................................... 144
9. Variational Principles in Multifractal Analysis ............ 147
   9.1. Conditional variational principle ..................... 147
   9.2. Topological Markov chains ............................. 156
   9.3. Dimension of irregular sets ........................... 160
   9.4. Repellers and mixed spectra ........................... 161

III. Multifractal Analysis: Further Developments .............. 165

10. Multidimensional Spectra and Number Theory ................ 167
   10.1.Conditional variational principle ..................... 167
   10.2.Geometry of the domains ............................... 173
   10.3.Regularity of the multifractal spectra ................ 177
   10.4.New phenomena in multidimensional spectra ............. 179
   10.5.Topological Markov chains ............................. 182
   10.6.Finer structure of the spectrum ....................... 184
   10.7.Applications to number theory ......................... 186
11.Multifractal Rigidity ...................................... 191
   11.1.Multifractal classification of dynamical systems ...... 191
   11.2.Entropy spectrum and topological Markov chains ........ 193
        11.2.1.Equivalence classes of functions ............... 193
        11.2.2.Locally constant functions ..................... 194
        11.2.3.Multifractal rigidity for locally constant
               functions ...................................... 197
        11.2.4.Failure of multifractal rigidity ............... 206
12.Hyperbolic Sets: Past and Future ........................... 209
   12.1.A model case: the Smale horseshoe ..................... 209
   12.2.Dimension spectra ..................................... 210
   12.3.Existence of full measures ............................ 213
   12.4.Formula for the spectrum .............................. 219
   12.5.Conditional variational principle ..................... 220

IV.Hyperbolicity and Recurrence ............................... 221

13.Pointwise Dimension for Hyperbolic Dynamics ................ 223
   13.1.Repellers of conformal maps ........................... 223
        13.1.1.Formula for the pointwise dimension ............ 223
        13.1.2.Dimension along ergodic decompositions ......... 228
   13.2.Hyperbolic sets of conformal maps ..................... 230
        13.2.1.Formula for the pointwise dimension ............ 230
        13.2.2.Dimension along ergodic decompositions ......... 234
14.Product Structure of Hyperbolic Measures ................... 237
   14.1.Nonuniform hyperbolicity .............................. 237
   14.2.Dynamical systems with nonzero Lyapunov exponents ..... 239
   14.3.Product structure of hyperbolic measures .............. 241
   14.4.Product structure of measures in hyperbolic sets ...... 244
15.Quantitative Recurrence and Dimension Theory ............... 255
   15.1.Basic notions ......................................... 255
   15.2.Upper bounds for recurrence rates ..................... 256
   15.3.Recurrence rate and pointwise dimension ............... 261
   15.4.Product structure and recurrence ...................... 264
        15.4.1.Preliminary results ............................ 264
        15.4.2.Stable and unstable recurrence rates ........... 271
        15.4.3.Product structure of recurrence ................ 281

Bibliography .................................................. 285
Index ......................................................... 297


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 10,494 bytes.
Посещение N 1929 c 11.08.2009