Springer monographs in mathematics; 115 (New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAdler R.J. Random fields and geometry / Adler R.J., Taylor J.E. - New York: Springer, 2007. - xvii, 448 p.: ill. - (Springer monographs in mathematics; 115). - ISBN 978-0-387-481120-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface	 ........................................................ v

Part I Gaussian Processes

1. Gaussian Fields .............................................. 7
   1.1. Random Fields ........................................... 7
   1.2. Gaussian Variables and Fields ........................... 8
   1.3. Boundedness and Continuity ............................. 11
   1.4. Examples ............................................... 20
        1.4.1. Fields on fig.1N .................................... 20
        1.4.2. Differentiability on fig.1N ......................... 22
        1.4.3. The Brownian Family of Processes ................ 24
        1.4.4. Generalized Fields .............................. 30
        1.4.5. Set-Indexed Processes ........................... 36
        1.4.6. Non-Gaussian Processes .......................... 40
   1.5. Majorizing Measures .................................... 41
2. Gaussian Inequalities ....................................... 49
   2.1. Borell-TIS Inequality .................................. 49
   2.2. Comparison Inequalities ................................ 57
3. Orthogonal Expansions ....................................... 65
   3.1. The General Theory ..................................... 66
   3.2. The Karhunen-Loeve Expansion ........................... 70
4. Excursion Probabilities ..................................... 75
   4.1. Entropy Bounds ......................................... 76
   4.2. Processes with a Unique Point of Maximal Variance ...... 86
   4.3. Examples ............................................... 89
   4.4. Extensions ............................................. 93
   4.5. The Double-Sum Method .................................. 95
   4.6. Local Maxima and Excursion Probabilities ............... 96
5. Stationary Fields .......................................... 101
   5.1. Basic Stationarity .................................... 101
   5.2. Stochastic Integration ................................ 103
   5.3. Moving Averages ....................................... 105
   5.4. Spectral Representations on fig.2N ........................ 109
   5.5. Spectral Moments ...................................... 112
   5.6. Constant Variance ..................................... 114
   5.7. Isotropy .............................................. 115
   5.8. Stationarity over Groups .............................. 119

Part II Geometry

6. Integral Geometry .......................................... 127
   6.1. Basic Integral Geometry ............................... 127
   6.2. Excursion Sets Again .................................. 134
   6.3. Intrinsic Volumes ..................................... 141
7. Differential Geometry ...................................... 149
   7.1. Manifolds ............................................. 149
   7.2. Tensor Calculus ....................................... 154
   7.3. Riemannian Manifolds .................................. 160
   7.4. Integration on Manifolds .............................. 166
   7.5. Curvature ............................................. 171
   7.6. Intrinsic Volumes for Riemannian Manifolds ............ 175
   7.7. A Euclidean Example ................................... 176
8. Piecewise Smooth Manifolds ................................. 183
   8.1. Whitney Stratified Spaces ............................. 184
   8.2. Locally Convex Spaces ................................. 188
   8.3. Cone Spaces ........................................... 190
9. Critical Point Theory ...................................... 193
   9.1. Critical Points ....................................... 193
   9.2. The Normal Morse Index ................................ 195
        9.2.1. The Index ...................................... 195
        9.2.2. Generalized Tangent Spaces and Tame
               Manifolds ...................................... 196
        9.2.3. Regular Stratified Manifolds ................... 198
        9.2.4. The Index on Intersections of Sets ............. 198
   9.3. Morse's Theorem for Stratified Spaces ................. 206
        9.3.1. Morse Functions ................................ 206
        9.3.2. Morse's Theorem ................................ 207
   9.4. The Euclidean Case .................................... 210
10.Volume of Tubes ............................................ 213
   10.1.The Volume-of-Tubes Problem ........................... 215
   10.2.Volume of Tubes and Gaussian Processes ................ 216
   10.3.Local Geometry of Tube(M, ρ) .......................... 219
        10.3.1.Basic Structure of Tubes ....................... 220
        10.3.2.Stratifying the Tube ........................... 222
   10.4.Computing the Volume of a Tube ........................ 223
        10.4.1.First Steps .................................... 223
        10.4.2.An Intermediate Computation .................... 224
        10.4.3.Subsets of fig.3l .................................. 225
        10.4.4.Subsets of Spheres ............................. 230
   10.5.Weyl's Tube Formula ................................... 231
   10.6.Volume of Tubes and Gaussian Processes, Continued ..... 242
   10.7.Intrinsic Volumes for Whitney Stratified Spaces ....... 244
        10.7.1.Alternative Representation of the Curvature
               Measures ....................................... 249
   10.8.Breakdown of Weyl's Tube Formula ...................... 249
   10.9.Generalized Lipschitz-Killing Curvature Measures ...... 250
        10.9.1.The Generalized Curvature Measures ............. 251
        10.9.2.Surface Measure on the Boundary of a Tube ...... 252
        10.9.3.Series Expansions for the Gaussian Measure
               of Tubes ....................................... 254

Part III The Geometry of Random Fields

11.Random Fields on Euclidean Spaces .......................... 263
   11.1.Rice's Formula ........................................ 263
   11.2.An Expectation Metatheorem ............................ 266
   11.3.Suitable Regularity and Morse Functions ............... 280
   11.4.An Alternate Proof of the Metatheorem ................. 283
   11.5.Higher Moments ........................................ 284
   11.6.Preliminary Gaussian Computations ..................... 286
   11.7.The Mean Euler Characteristic ......................... 289
   11.8.Mean Intrinsic Volumes ................................ 298
   11.9.On the Importance of Stationarity ..................... 299
12.Random Fields on Manifolds ................................. 301
   12.1.The Metatheorem on Manifolds .......................... 301
   12.2.Riemannian Structure Induced by Gaussian Fields ....... 305
        12.2.1.Connections and Curvatures ..................... 306
        12.2.2.Some Covariances ............................... 308
        12.2.3.Gaussian Fields on fig.4N .......................... 310
   12.3.Another Gaussian Computation .......................... 312
   12.4.The Mean Euler Characteristic ......................... 315
        12.4.1.Manifolds without Boundary ..................... 315
        12.4.2.Manifolds with Boundary ........................ 317
   12.5.Examples .............................................. 323
   12.6.Chern-Gauss-Bonnet Theorem ............................ 327
13.Mean Intrinsic Volumes ..................................... 331
   13.1.Crofton's Formula ..................................... 332
   13.2.Mean Intrinsic Volumes: The Isotropic Case ............ 333
   13.3.A Gaussian Crofton Formula ............................ 334
   13.4.Mean Intrinsic Volumes: The General Case .............. 342
   13.5.Two Gaussian Lemmas ................................... 343
14.Excursion Probabilities for Smooth Fields .................. 349
   14.1.On Global Suprema ..................................... 351
        14.1.1.A First Representation ......................... 352
        14.1.2.The Problem with the First Representation ...... 354
        14.1.3.A Second Representation ........................ 354
        14.1.4.Random Fields .................................. 360
        14.1.5.Suprema and Euler Characteristics .............. 362
   14.2.Some Fine Tuning ...................................... 365
   14.3.Gaussian Fields with Constant Variance ................ 368
   14.4.Examples .............................................. 372
        14.4.1.Stationary Processes on [0, T] ................. 372
        14.4.2.Isotropic Fields with Monotone Covariance ...... 374
        14.4.3.A Geometric Approach ........................... 376
        14.4.4.The Cosine Field ............................... 382
15.Non-Gaussian Geometry ...................................... 387
   15.1.A Plan of Action ...................................... 389
   15.2.A Representation for Mean Intrinsic Volumes ........... 391
   15.3.Proof of the Representation ........................... 392
   15.4.Poincare's Limit ...................................... 398
   15.5.Kinematic Fundamental Formulas ........................ 400
        15.5.1.The KFF on fig.1n .................................. 401
        15.5.2.The KFF on Sλ(fig.5n) ............................... 402
   15.6.A Model Process on the l-Sphere ....................... 402
        15.6.1.The Process .................................... 403
        15.6.2.Mean Curvatures for the Model Process .......... 404
   15.7.The Canonical Gaussian Field on the l-Sphere .......... 410
        15.7.1.Mean Curvatures for Excursion Sets ............. 411
        15.7.2.Implications for More General Fields ........... 415
   15.8.Warped Products of Riemannian Manifolds ............... 416
        15.8.1.Warped Products ................................ 417
   15.8.2.A Second Fundamental Form ........................... 419
   15.9.Non-Gaussian Mean Intrinsic Volumes ................... 421
   15.10.Examples ............................................. 425
        15.10.1.The Gaussian Case ............................. 426
        15.10.2.The x2 Case ................................... 427
        15.10.3.The F Case .................................... 430

References .................................................... 435

Notation Index ................................................ 443

Subject Index ................................................. 445


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 14,566 bytes.
Посещение N 1257 c 11.08.2009