Stochastic modeling and optimization (New York; London, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаStochastic modeling and optimization: with applications in queues, finance, and supply chains / ed. by Yao D.D., Zhang H., Zhao X.Yu. - New York; London: Springer-Verlag, 2003. - xi, 468 p.: ill. - ISBN 0-387-95582-8
 

Оглавление / Contents
 
Preface ......................................................... v

1. Discrete-time Singularly Perturbed Markov Chains ............. 1
      G. Yin and Q. Zhang

   1.1. Singularly Perturbed Markov Chains ...................... 2
        1.1.1. Motivation ....................................... 2
        1.1.2. Preliminary ...................................... 3
        1.1.3. Singularly Perturbed Models ...................... 5
        1.1.4. Motivating Examples .............................. 9
   1.2. Asymptotic Expansions .................................. 12
   1.3. Occupation Measures .................................... 18
   1.4. Nonstationary Markov Chains and Applications ........... 23
        1.4.1. Asymptotic Properties for Smooth Transition
               Matrices ........................................ 23
        1.4.2. Bounded and Measurable Transition Matrices ...... 29
        1.4.3. Applications to Nearly Optimal Controls ......... 32
   1.5. Notes and Remarks ...................................... 36
        1.5.1. Notes on the Literature ......................... 36
        1.5.2. Possible Future Research Topics ................. 37
   1.6. References ............................................. 38

2. Nearly Optimal Controls of Markovian Systems ................ 43
      Q. Zhang, R.H. Liu, and G. Yin

   2.1. Singularly Perturbed MDP ............................... 44
        2.1.1. Irreducible MDP under Discounted Cost ........... 46
        2.1.2. Irreducible MDP under Long-Run Average Cost ..... 51
        2.1.3. MDP with General Transition Matrices ............ 54
        2.1.4. Historical Notes ................................ 61
   2.2. Hybrid LQG Control ..................................... 62
        2.2.1. Aggregation and Approximation ................... 66
        2.2.2. Asymptotic Optimality ........................... 71
        2.2.3. Hybrid LQG "with General Transition Matrices .... 75
        2.2.4. A Numerical Example ............................. 80
        2.2.5. Historical Notes ................................ 82
   2.3. Conclusions ............................................ 83
   2.4. References ............................................. 83

3. Stochastic Approximation, with Applications ................. 87
      Han-Fu Chen

   3.1. SA Algorithms .......................................... 87
   3.2. General Convergence Theorems by TS Method .............. 90
   3.3. Convergence Theorems Under State-Independent
        Conditions ............................................. 99
   3.4. Applications .......................................... 102
        3.4.1. Application to Optimization .................... 102
        3.4.2. Application to Signal Processing ............... 105
   3.5. Notes ................................................. 107
   3.6. References ............................................ 108

4. Performance Potential Based Optimization and MDPs .......... 111
      Xi-Ren Cao

   4.1. Sensitivity Analysis and Performance Potentials ....... 112
   4.2. Markov Decision Processes ............................. 116
   4.3. Problems with Discounted Performance Criteria ......... 118
   4.4. Single Sample Path Based Implementations .............. 121
   4.5. Time Aggregation ...................................... 123
   4.6. Connections to Perturbation Analysis .................. 126
   4.7. Application Examples .................................. 128
   4.8. Notes ................................................. 130
   4.9. References ............................................ 134

5. An Interior-Point Approach to Multi-Stage Stochastic Pro
   gramming ................................................... 137
      Shuzhong Zhang

   5.1. Two-Stage Stochastic Linear Programming ............... 139
   5.2. A Case Study .......................................... 142
   5.3. Multiple Stage Stochastic Programming ................. 144
   5.4. An Interior Point Method .............................. 146
   5.5. Finding Search Directions ............................. 156
   5.6. Model Diagnosis ....................................... 164
   5.7. Notes ................................................. 167
   5.8. References ............................................ 168

6. A Brownian Model of Stochastic Processing Networks ......... 171
      Hong Chen

   6.1. Preliminaries ......................................... 172
   6.2. Stochastic Processing Network Model ................... 174
   6.3. Examples of Stochastic Processing Networks ............ 176
        6.3.1. Scheduling Control of Multiclass Queueing
               Network ........................................ 176
        6.3.2. A Simple Queueing Network with both
               Scheduling and Routing ......................... 177
        6.3.3. An Assemble-To-Order System .................... 179
   6.4. Brownian Model for Stochastic Processing Network ...... 181
        6.4.1. Comparison to Harrison's Brownian Model ........ 183
        6.4.2. Extensions ..................................... 184
   6.5. Brownian Approximation via Strong Approximation ....... 185
   6.6. Notes ................................................. 186
   6.7. Appendix: Strong Approximation vs. Heavy Traffic
        Approximation ......................................... 187
   6.8. References ............................................ 191

7. Stability of General Processing Networks ................... 193
      Jim Dai and Otis B. Jennings

   7.1. Motivating Simulations ................................ 195
   7.2. Open Processing Networks .............................. 201
        7.2.1. Network Description ............................ 202
        7.2.2. The Standard Network and Dispatch Policies ..... 205
        7.2.3. Production Policies and Sensible Policies ...... 206
        7.2.4. Rate Stability ................................. 209
   7.3. Network and Fluid Model Equations ..................... 210
        7.3.1. Network Dynamics ............................... 210
        7.3.2. Fluid Models ................................... 214
        7.3.3. Connection between Processing Networks and
               Fluid Models ................................... 217
   7.4. Connection between Artificial and Standard Fluid
        Models ................................................ 219
        7.4.1. Batch Processing Networks and Normal
               Policies ....................................... 219
        7.4.2. Stability under Sensible Production Policies ... 222
   7.5. Examples of Stable Policies ........................... 223
        7.5.1. Early Steps First .............................. 223
        7.5.2. Generalized Round Robin ........................ 228
   7.6. Extensions ............................................ 230
   7.7. Appendix .............................................. 232
        7.7.1. Departures As a Function of Server Effort ...... 232
        7.7.2. Proofs of Lemmas 7.12 and 7.18 ................. 236
   7.8. Notes ................................................. 240
   7.9. References ............................................ 241

8. Large Deviations, Long-Range Dependence, and Queues ........ 245
      C.-S. Chang, David D. Yao and Tim Zajic

   8.1. Fractional Brownian Motion and a Related Filter ....... 246
   8.2. Moderate Deviations for Sample-Path Processes ......... 248
   8.3. MDP for the Filtered Process .......................... 252
   8.4. Queueing Applications: The Workload Process ........... 258
   8.5. Verifying the Key Assumptions ......................... 267
   8.6. Notes ................................................. 274
   8.7. References ............................................ 275

9. Markowitz's World in Continuous Time, and Beyond ........... 279
      Xun Yu Zhou

   9.1. The Mean-Variance Portfolio Selection Model ........... 280
   9.2. A Stochastic LQ Control Approach ...................... 283
   9.3. Efficient Frontier: Deterministic Market Parameters ... 285
   9.4. Efficient Frontier: Random Adaptive Market
        Parameters ............................................ 292
   9.5. Efficient Frontier: Markov-Modulated Market
        Parameters ............................................ 296
   9.6. Efficient Frontier: No Short Selling .................. 299
   9.7. Mean-Variance Hedging ................................. 300
   9.8. Notes ................................................. 303
   9.9. References ............................................ 305

10.Variance Minimization in Stochastic Systems ................ 311
      Duan Li, Fucai Qian and Peilin Fu

   10.1.Variance Minimization Problem ......................... 311
   10.2.General Variance Minimization Problem ................. 314
   10.3.Variance Minimization in Dynamic Portfolio
        Selection ............................................. 316
   10.4.Variance Minimization in Dual Control ................. 323
   10.5.Notes ................................................. 330
   10.6.References ............................................ 330

11.A Markov Chain Method for Pricing Contingent Claims ........ 333
      Jin-Chuan Duan, Genevieve Gauthier and Jean-Guy Simonato

   11.1.The Markov Chain Pricing Method ....................... 334
   11.2.The Black-Scholes (1973) Pricing Model ................ 336
        11.2.1.Choosing the Set of Asset Prices ............... 337
        11.2.2.Computing Transition Probabilities and Option
               Prices ......................................... 338
        11.2.3.An Illustrative Example ........................ 339
        11.2.4.A Markov Chain Interpretation of Binomial
               Tree ........................................... 341
        11.2.5.Numerical Examples ............................. 343
   11.3.The GARCH Pricing Model ............................... 347
        11.3.1.Choosing the Set of Discrete Prices and
               Volatilities ................................... 349
        11.3.2.Computing Transition Probabilities and Option
               Prices ......................................... 350
        11.3.3.Numerical Examples ............................. 351
   11.4.Valuing Exotic Options ................................ 355
   11.5.Appendix: The Conditional Expected Value of
        hT* and h2T* ........................................... 360
   11.6.References ............................................ 361

12.Stochastic Network Models and Optimization of a Hospital
   System ..................................................... 363
      Xiuli Chao, Liming Liu and Shaohui Zheng

   12.1.A Multi-Site Service Network Model .................... 364
   12.2.Patient Flow Management ............................... 366
   12.3.Capacity Design ....................................... 371
   12.4.Switching Costs and Quality of Service ................ 382
   12.5.Insights and Future Research Directions ............... 387
   12.6.Notes ................................................. 390
   12.7.References ............................................ 391

13.Optimal Airline Booking Control with Cancellations ......... 395
      Youyi Feng, Ping Lin and Baichun Xiao

   13.1.Preliminaries ......................................... 396
        13.1.1.Model Description .............................. 396
        13.1.2.Optimality Conditions and the Value Function ... 398
   13.2.The Minimum Acceptable Fare and Threshold Control ..... 400
        13.2.1.The Minimum Acceptable Fare .................... 400
        13.2.2.Properties of MAF .............................. 402
        13.2.3.Threshold Control and Computation of the Value
               Function ....................................... 412
   13.3.Extensions of the Basic Model ......................... 414
        13.3.1.Time-Dependent Air Fares ....................... 414
        13.3.2.Fare-Dependent Partial Refunds ................. 414
   13.4.Numerical Experiments ................................. 418
   13.5.Notes ................................................. 421
   13.6.References ............................................ 424

14.Information Revision and Decision Making in Supply Chain
   Management ................................................. 429
      Houmin Yan and Hanqin Zhang

   14.1.Industrial Examples ................................... 429
        14.1.1.The Procurement of Micro-Controller ............ 430
        14.1.2.Analysis of Demand Forecast Data ............... 431
        14.1.3.The Deregulated Energy Markets ................. 435
   14.2.A Multi-Period, Two-Decision Model .................... 435
   14.3.A One-Period, Multi-Information Revision Model ........ 443
   14.4.Applications .......................................... 450
        14.4.1.Decision-Making with Two Procurement
               Alternatives ................................... 450
        14.4.2.The Application to Deregulated Energy
               Markets ........................................ 450
   14.5.Notes ................................................. 451
   14.6.References ............................................ 455

About the Contributors ........................................ 459


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 17,420 bytes.
Посещение N 2082 c 04.08.2009