Luminescence: from theory to applications (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLuminescence: from theory to applications / ed. by Ronda С. -Weinheim: Wiley-VCH, 2008. - xv, 260 p.: ill. (some col.). - ISBN 978-3-527-31402-7
 

Оглавление / Contents
 
Foreword ........................................................ V
Preface ...................................................... XIII
List of Contributors ........................................... XV

1. Emission and Excitation Mechanisms of Phosphors .............. 1
      Cees R. Ronda

1.1. Introduction ............................................... 1
1.2. General Considerations - Fluorescent Lamps ................. 1
1.3. General Considerations - Cathode Ray Tubes ................. 2
1.4. Luminescence Mechanisms .................................... 3
     1.4.1. Center Luminescence ................................. 4
     1.4.2. Charge Transfer Luminescence ........................ 8
     1.4.3. Donor Acceptor Pair Luminescence .................... 8
     1.4.4. Long Afterglow Phosphors ........................... 11
1.5. Excitation Mechanisms ..................................... 12
     1.5.1. Optical Excitation of Luminescence and Energy
            Transfer ........................................... 12
1.6. Energy Transfer Mechanisms between Optical Centers ........ 14
     1.6.1. Mechanisms Underlying Energy Transfer .............. 14
     1.6.2. Energy Transfer Governed by Electrostatic
            Interaction ........................................ 15
     1.6.3. Energy Transfer by Higher-order Coulomb
            Interaction ........................................ 18
     1.6.4. Energy Transfer Governed by Exchange
            Interactions ....................................... 19
     1.6.5. Cross-relaxation and Energy Transfer ............... 19
     1.6.6. Practical Implications ............................. 20
1.7. Excitation with High-energy Particles ..................... 21
1.8. Electroluminescence (EL) .................................. 24
     1.8.1. High-voltage Electroluminescence ................... 24
     1.8.2. Low-voltage Electroluminescence .................... 26
1.9. Factors Determining the Emission Color .................... 27
1.10.Energy Efficiency Considerations of Important
     Luminescent Devices ....................................... 29
1.11.Luminescence Quantum Yield and Quenching Processes ........ 29
     1.11.1. The Energy does not Reach the Luminescent Ion ..... 31
     1.11.2. The Absorbed Energy Reaches the Luminescent
             Ion but there are Nonradiative Channels to
             the Ground State .................................. 31
     1.11.3. The Luminescence Generated is Absorbed by the
             Luminescent Material .............................. 33
1.12.Acknowledgement ........................................... 34

2. Quantum Dots and Nanophosphors .............................. 35
      Cees R. Rondo and Thomas Jüstel

2.1. Introduction .............................................. 35
     2.1.1. Optical Properties of Quantum Dots ................. 35
     2.1.2. Particle in a One-dimensional Potential Well ....... 36
     2.1.3. Particle in Three-dimensional Potentials ........... 40
            2.1.3.1. Particle in a General Three-dimensional
                     Potential ................................. 40
            2.1.3.2. Electron in a Coulomb Potential ........... 41
            2.1.3.3. The Hydrogen Atom ......................... 42
2.2. Density of States in Low-dimensional Structures ........... 43
2.3. Electrons, Holes, and Excitons ............................ 45
2.4. Low-dimensional Structures ................................ 46
     2.4.1. The Weak Confinement Regime ........................ 46
     2.4.2. The Strong Confinement Regime ...................... 47
2.5. Quantum Confinement in Action ............................. 49
2.6. Photoluminescence of Quantum Dots Prepared by Wet-
     chemical Precipitation .................................... 52
2.7. Photoluminescence from Doped Quantum Dots ................. 53
2.8. Luminescence of Nano Particles of Rare-Earth Phosphors .... 55
2.9. Nanoscale Particles for Molecular Imaging ................. 56
2.10.Conclusions ............................................... 58
2.11.Acknowledgements .......................................... 58

3. Phosphors for Plasma Display Panels ......................... 61
      Thomas Jüstel

3.1. Introduction .............................................. 61
3.2. Principle of Operation of Plasma Display Panels ........... 61
3.3. Performance of Applied Phosphors in PDPs .................. 65
     3.3.1. Phosphor Efficiency ................................ 66
     3.3.2. Electronic Transitions Involved in Europium
            Luminescence ....................................... 68
     3.3.3. Color point and efficiency of the red phosphors .... 68
     3.3.4. Stability and Color Point of BaMgAl10O17:Eu ......... 70
3.4. Summary and Prospects ..................................... 72

4. Quantum-Splitting Systems ................................... 75
      Alok M. Srivastava and Cees R. Ronda

4.1. Introduction .............................................. 75
4.2. Quantum-splitting Phosphors Based on Pr3+-activated
     Fluoride Materials ........................................ 76
4.3. Quantum-splitting Phosphors Based on Pr3+-activated
     Oxide Materials ........................................... 82
     4.3.1. SrAl12O19: Pr3+ ...................................... 83
            4.3.1.1. LaMgB5O10 and LaB3O6 Doped with Pr3+ ........ 85
4.4. The Quantum Efficiency of the Quantum-splitting Process ... 88
4.5. Limitations of Pr3+-based Quantum-splitting Phosphors ...... 91
4.6. Quantum-splitting Phosphors Based on Gd3+ and Rare
     Earth Ion-Activated Fluoride Materials .................... 92
     4.6.1. The Electronic Energy Level Structure of the
            Gd3+Ion ............................................. 92
     4.6.2. Quantum Splitting in the Gd3+-Eu3+ System ........... 94
     4.6.3. Quantum Splitting in the Er3+-Gd3+-Tb3+ System ....... 97
4.7. Multiphoton Emission through High-energy Excitation ....... 98
4.8. Applications of Quantum-splitting Phosphors ............... 99
4.9. Conclusions .............................................. 100
4.10.Acknowledgements ......................................... 101

5. Scintillators .............................................. 205
      Cees R. Ronda and Alok M. Srivastava

5.1. Introduction ............................................. 105
5.2. Positron Emission Tomography and Computed Tomography ..... 106
     5.2.1. Physical Principles of Positron Emission
            Tomography (PET) .................................. 106
     5.2.2. Computed Tomography (CT) .......................... 107
5.3. General Requirements for Scintillating Materials used
     in Medical Imaging ....................................... 107
5.4. Scintillators for Pet Application ........................ 112
     5.4.1. General Description of Phosphors for PET
            Scintillators ..................................... 112
     5.4.2. Scintillating Composition Used in PET ............. 114
            5.4.2.1. Bi4Ge3012 (BGO) .......................... 115
            5.4.2.2. NaI:Tl+ .................................. 116
            5.4.2.3. Lu2SiO5:Ce3+ (LSO) ....................... 116
            5.4.2.4. Lu2Si2O7:Ce (Lutetium Pyrosilicate,
                     LPS) ..................................... 117
            5.4.2.5. LaBr3:Ce ................................. 118
            5.4.2.6. LuI3:Ce .................................. 119
     5.4.3. Other PET Scintillators ........................... 119
5.5. Scintillators for CT Application ......................... 120
     5.5.1. General Description of Scintillators for CT ....... 120
     5.5.2. Scintillating Compositions Used in CT ............. 120
            5.5.2.1. CdWO4 .................................... 120
            5.5.2.2. (Y,Gd)203:Eu3+ ............................ 121
            5.5.2.3. Gd202S:Pr3+ (GOS) ......................... 122
5.6. X-ray Intensifying Screens ............................... 123
     5.6.1. General Description of Scintillators for
            Intensifying Screens .............................. 123
     5.6.2. Phosphor Compositions for Use in X-ray
            Intensifying Screens .............................. 123
5.7. FDXD Detectors ........................................... 124
5.8. Storage Phosphors ........................................ 124
     5.8.1. General Description of Storage Phosphors .......... 124
5.9. Semiconductor Scintillators .............................. 127

6. Upconversion Phosphors ..................................... 133
      J. Freek Suijver

6.1. Introduction ............................................. 133
6.2. Theory of Upconversion ................................... 137
     6.2.1. Absorption and Excitation Spectroscopy ............ 139
     6.2.2. Time Evolution of UC Emission ..................... 143
     6.2.3. Power Dependence of Upconversion .................. 146
     6.2.4. Photon Avalanche Effects in Upconversion .......... 150
     6.2.5. Determination of the Upconversion Efficiency ...... 153
6.3. Examples ................................................. 154
     6.3.1. Rare Earth Upconverters ........................... 155
     6.3.2. Transition Metal Upconverters ..................... 162
     6.3.3. Mixed Rare Earth/Transition Metal Upconverters .... 165
     6.3.4. Organic Upconverters .............................. 169
     6.3.5. Nanocrystalline Upconverters ...................... 171
6.4. Conclusions and Outlook .................................. 175
6.5. Acknowledgements ......................................... 276

7. Luminescent Materials for Phosphor-Converted LEDs .......... 179
      Thomas Jüstel

7.1. Inorganic Light-Emitting Diodes (LEDs) ................... 179
7.2. White and Colored LEDs ................................... 180
7.3. Phosphor-Converted LEDs .................................. 183
7.4. Future Trends ............................................ 188

8. Organic Electroluminescence ................................ 191
      Joseph J. Shiang and Anil R. Duggal

8.1. Introduction ............................................. 191
8.2. OLED Fundamentals ........................................ 192
8.3. Key OLED Trends and Innovations .......................... 197
     8.3.1. Electroluminescence from Vapor-deposited
            Organic Films ..................................... 197
     8.3.2. Electroluminescence from Solution-Deposited
            Organic Films ..................................... 202
8.4. Prospects for General Illumination ....................... 207
     8.4.1. A First OLED Lighting Demonstration ............... 208
            8.4.1.1. Downconversion for White Light
                     Generation ............................... 209
            8.4.1.2. Scattering for Outcoupling Efficiency
                     Enhancement .............................. 210
            8.4.1.3. A Scalable Monolithic Series
                     Architecture ............................. 211
     8.4.2. Efficiency Challenge for General Illumination ..... 212
8.5. Conclusions .............................................. 213
8.6. Acknowledgements ......................................... 214

9. Experimental Techniques .................................... 219
      Peter Vergeer

9.1. Introduction ............................................. 219
9.2. Energy of Optical Transitions: Absorption, Excitation,
     and Emission Spectroscopy ................................ 220
     9.2.1. Broadband Light Sources ........................... 223
     9.2.2. Dispersing Elements ............................... 224
            9.2.2.1. Gratings ................................. 224
            9.2.2.2. Interferometers .......................... 227
     9.2.3. Detectors ......................................... 229
9.3. The Transition Dipole Moment: Absorption Strengths and
     Luminescence Lifetimes ................................... 233
     9.3.1. Lasers ............................................ 235
     9.3.2. Luminescence Lifetimes ............................ 237
9.4. Quantum Efficiency and Nonradiative Relaxation ........... 238
9.5. Homogeneous Broadening and Dephasing ..................... 240
9.6. Detection of Luminescence from Individual Optical
     Centers .................................................. 244
9.7. Acknowledgement .......................................... 248

Index ......................................................... 251


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 16,848 bytes.
Посещение N 2213 c 04.08.2009