Ganichev S.D. Intense terahertz excitation of semiconductors (Oxford; New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGanichev S.D. Intense terahertz excitation of semiconductors / Ganichev S.D., Prettl W. - Oxford; New York: Oxford University Press, 2006. - xi, 418 p.: ill. - (Series on semiconductor science and technology; 14) (Oxford science publications). - ISBN 978-0-19-852830-2
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
Introduction .................................................... 1

1. Experimental technique ....................................... 5
   1.1. Sources of high-power terahertz radiation ............... 5
        1.1.1. CO2 laser ........................................ 7
        1.1.2. Optically pumped terahertz molecular lasers ..... 11
        1.1.3. Tunable high-pressure TE-CO2 laser pumped
               terahertz molecular lasers ...................... 16
        1.1.4. Free-electron lasers ............................ 21
        1.1.5. Short coherent terahertz pulses ................. 30
   1.2. Optical components and methods in the THz range ........ 34
        1.2.1. Windows ......................................... 34
        1.2.2. Filters ......................................... 40
        1.2.3. Polarizers ...................................... 55
        1.2.4. Spectral analysis ............................... 60
        1.2.5. Attenuators ..................................... 62
        1.2.6. Transmission through the atmosphere,  liquid
               nitrogen, and liquid helium ..................... 63
   1.3. Detection of pulsed terahertz radiation ................ 64
        1.3.1. Photon drag detectors ........................... 67
        1.3.2. μ-photoconductivity detectors ................... 69
        1.3.3. Pyroelectric detectors .......................... 70
        1.3.4. Atomic layer thermopile ......................... 72
        1.3.5. New detection concepts .......................... 75
   References .................................................. 79
2. Tunneling in terahertz fields ............................... 93
   2.1. Terahertz field induced tunneling ...................... 94
        2.1.1. Ionization of deep impurities ................... 94
        2.1.2. Theory of tunneling ionization .................. 98
        2.1.3. Phonon-assisted tunneling ionization in the
               quasistatic limit .............................. 116
        2.1.4. Tunneling ionization in the high-frequency
               limit .......................................... 118
        2.1.5. Transition to direct tunneling ................. 121
        2.1.6. Magnetic field effect on tunneling
               ionization ..................................... 124
        2.1.7. Tunneling ionization of charged impurities
               and the Poole-Frenkel effect ................... 125
        2.1.8. Terahertz tunneling as a method ................ 127
   2.2. Photon mediated tunneling in quantum wells ............ 128
        2.2.1. Resonant tunneling ............................. 130
        2.2.2. Negative differential conductivity ............. 133
   2.3. Ponderomotive force stimulated tunneling .............. 136
        2.3.1. Radiation pressure enhanced tunneling .......... 138
        2.3.2. Tunneling enhancement in the near-zone field ... 145
   References ................................................. 152
   Multiphoton excitation ..................................... 161
   3.1. Two-photon absorption ................................. 162
   3.2. Fully developed multiphoton transitions ............... 165
        3.2.1. Nonlinear transmission ......................... 167
        3.2.2. Nonlinear photon drag effect ................... 170
   3.3. Multiphoton transitions in low-dimensional systems .... 175
   References ................................................. 181
   Saturation of absorption ................................... 185
   4.1. Basics of optical saturation .......................... 187
        4.1.1. Rabi oscillations .............................. 187
        4.1.2. Relaxation ..................................... 189
   4.2. Low-power saturation .................................. 195
        4.2.1. Nonlinear spectroscopy of impurities ........... 195
        4.2.2. Nonlinear cyclotron resonance .................. 201
   4.3. Saturation of inter-subband transitions in wide QWs ... 204
   4.4. Reduction of depolarization shift in QWs .............. 206
   4.5. Saturation of direct transitions in bulk p-Ge ......... 209
   4.6. Pump-and-probe technique .............................. 213
   4.7. Spin-sensitive bleaching .............................. 214
   4.8. Rabi oscillations. 219 References ..................... 224
5. Electron gas heating ....................................... 237
   5.1. Electron temperature limit and μ-photoconductivity .... 238
   5.2. Heating and absolute electron gas cooling ............. 239
   5.3. Dynamic inversion of μ-photoconductivity .............. 240
   5.4. Nonlinear μ-photoconductivity in 2DEG ................. 243
        5.4.1. Si-MOSFET structures ........................... 244
        5.4.2. III-V-compound low-dimensional structures ...... 247
   5.5. Light impact ionization ............................... 249
        5.5.1. Bulk InSb ...................................... 251
        5.5.2. Quantum well structures ........................ 255
   5.6. Heating of phonons .................................... 256
   References ................................................. 260
   Terahertz nonlinear optics ................................. 269
   6.1. Nonlinear optical susceptibility ...................... 270
   6.2. Terahertz second-order nonlinearity ................... 273
   6.3. Third-harmonic generation and four-wave mixing ........ 278
   6.4. Terahertz electrooptics ............................... 280
        6.4.1. Terahertz side-bands of near-infrared
               radiation ...................................... 280
        6.4.2. Dynamic Franz-Keldysh and Stark effects ........ 282
   6.5. THz nonlinearities in semiconductor superlattices ..... 284
   References ................................................. 285
7. Terahertz radiation induced currents ....................... 291
   7.1. Photon drag effect .................................... 293
        7.1.1. Direct optical transitions ..................... 294
        7.1.2. Drude absorption ............................... 306
        7.1.3. Photoionization of impurities and
               transitions between Zeeman-split levels ........ 308
   7.2. Linear photogalvanic effect ........................... 311
        7.2.1. Bulk materials ................................. 316
        7.2.2. Quantum wells .................................. 318
        7.2.3. Magneto-photogalvanic effects .................. 322
        7.2.4. Magneto-gyrotropic effects in quantum wells .... 325
   7.3. Spin photocurrents .................................... 331
        7.3.1. Circular photogalvanic effect .................. 332
        7.3.2. Spin-galvanic effect ........................... 349
        7.3.3. Circular photogalvanic effect versus
               spin-galvanic effect ........................... 361
        7.3.4. Application of spin photocurrents .............. 361
        7.3.5. Monopolar spin orientation ..................... 364
   References ................................................. 367
8. Bloch oscillations ......................................... 379
   8.1. Superlattice transport ................................ 380
        8.1.1. Miniband conductance ........................... 381
        8.1.2. Wannier-Stark hopping .......................... 383
        8.1.3. Sequential tunneling ........................... 384
        8.1.4. Interplay between transport mechanisms ......... 385
   8.2. THz excitation of superlattices ....................... 386
   8.3. Dynamic localization and negative conductivity ........ 391
   8.4. THz gain in superlattices ............................. 393
   References ................................................. 395

A. Removal of spin degeneracy ................................. 399
   A.l. Zinc-blende structure based QWs ....................... 401
   References ................................................. 403
В. Symbol Glossary-Index ...................................... 407

Index ......................................................... 413

Acknowledgement for reuse of figures .......................... 417


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:02 2019. Размер: 11,986 bytes.
Посещение N 2183 c 04.08.2009