Saveant J.-M. Elements of molecular and biomolecular electrochemistry (New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSaveant J.-M. Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry. - New York: Wiley-Interscience, 2006. - xviii, 485 p.: ill. - (George Fisher Baker non-resident lectureship in chemistry at Cornell University). - ISBN 0-471-44573-8
 

Оглавление / Contents
 
Preface ...................................................... xiii

CHAPTER 1 Single Electron Transfer at an Electrode .............. 1

1.1. Introduction ............................................... 1
1.2. Cyclic Voltammetry of Fast Electron Transfers.
     Nernstian Waves ............................................ 2
     1.2.1. One-Electron Transfer to Molecules Attached to
            the Electrode Surface ............................... 2
     1.2.2. One-Electron Transfer to Free-Moving Molecules ...... 5
1.3. Technical Aspects ......................................... 10
     1.3.1. The Cyclic Voltammetry Experiment. Faradaic and
            Double-Layer Charging Currents. Ohmic Drop ......... 10
     1.3.2. Other Techniques. Convolution ...................... 20
1.4. Electron Transfer Kinetics ................................ 28
     1.4.1. Introduction ....................................... 28
     1.4.2. Butler-Volmer Law and Marcus-Hush Model ............ 30
     1.4.3. Extraction of Electron Transfer Kinetics from
            Cyclic Voltammetric Signals. Comparison with
            Other Techniques ................................... 44
     1.4.4. Experimental Testing of the Electron Transfer
            Models ............................................. 57
1.5. Successive One-Electron Transfers vs. Two-Electron
     Transfers ................................................. 62
     1.5.1. Introduction ....................................... 62
     1.5.2. Cyclic Voltammetric Responses. Convolution ......... 64
     1.5.3. Response of Molecules Containing Identical and
            Independent Reducible or Oxidizable Groups ......... 69
     1.5.4. An Example of the Predominating Role
            of Solvation: The Oxidoreduction of Carotenoids .... 70
     1.5.5. An Example of the Predominating Role of
            Structural Changes: The Reduction of
            trans-2,3-Dinitro-2-butene ......................... 73
     References and Notes ...................................... 75

CHAPTER 2 Coupling of Electrode Electron Transfers with
          Homogeneous Chemical Reactions ....................... 78

2.1. Introduction .............................................. 78
2.2. Establishing the Mechanism and Measuring the Rate
     Constants for Homogeneous Reactions by Means of Cyclic
     Voltammetry and Potential Step Chronoamperometry .......... 80
     2.2.1. The EC Mechanism ................................... 80
     2.2.2. The CE Mechanism ................................... 92
     2.2.3. The Square Scheme Mechanism ........................ 94
     2.2.4. The ECE and DISP Mechanisms ........................ 96
     2.2.5. Electrodimerization ............................... 102
     2.2.6. Homogeneous Catalytic Reaction Schemes ............ 106
     2.2.7. Electrodes as Catalysts ........................... 119
     2.2.8. Numerical Computations. Simulations. Diagnostic
            Criteria. Working Curves .......................... 121
2.3. Application of Redox Catalysis to the Kinetic
     Characterization of Fast Follow-up Reactions ............. 125
     2.3.1. Principle and Achievements of the Method .......... 125
     2.3.2. Comparison with Fast Cyclic Voltammetry and
            Laser Flash Photolysis ............................ 128
     2.3.3. Determination of the Standard Potential for
            the Formation of Very Unstable Primary
            Intermediates ..................................... 129
     2.3.4. Redox Catalysis of Electrocatalytic Processes ..... 131
2.4. Product Distribution in Preparative Electrolysis ......... 132
     2.4.1. Introduction ...................................... 132
     2.4.2. General Features .................................. 133
     2.4.3. Product Distribution Resulting from
            Competition Between Follow-up Reactions ........... 136
     2.4.4. The ECE-DISP Competition .......................... 138
     2.4.5. Other Reactions Schemes ........................... 139
2.5. Chemical Classification and Examples of Coupled
     Reactions ................................................ 140
     2.5.1. Coupling of Single Electron Transfer with Acid-
            Base Reactions .................................... 140
     2.5.2. Electrodimerization ............................... 148
     2.5.3. Electropolymerization ............................. 151
     2.5.4. Reduction of Carbon Dioxide ....................... 152
     2.5.5. H-Atom Transfer vs. Electron + Proton Transfer .... 154
     2.5.6. The SrN1 Substitution. Electrodes and Electrons
            as Catalysts ...................................... 158
     2.5.7. Conformational Changes, Isomerization, and
            Electron Transfer ................................. 163
2.6. Redox Properties of Transient Radicals ................... 167
     2.6.1. Direct Electrochemical Approach ................... 167
     2.6.2. Application of Laser Flash Electron Injection ..... 172
     2.6.3. Photomodulaltion Voltammetry ...................... 175
     2.6.4. Application of Redox Catalysis .................... 177
2.7. Electrochemistry as a Trigger for Radical Chemistry
     or Ionic Chemistry ....................................... 178
     References and Notes ..................................... 179

CHAPTER 3 Electron Transfer, Bond Breaking, and Bond
          Formation ........................................... 182

3.1. Introduction ............................................. 182
3.2. Dissociative Electron Transfer ........................... 184
     3.2.1. Thermodynamics. Microscopic Reversibility ......... 184
     3.2.2. The Morse Curve Model ............................. 187
     3.2.3. Values of the Symmetry Factor and Variation
            with the Driving Force ............................ 192
     3.2.4. Entropy of Activation ............................. 193
3.3. Interactions Between Fragments in the Product Cluster .... 194
     3.3.1. Influence on the Dynamics of Dissociative
            Electron Transfers ................................ 195
     3.3.2. Typical Example: Dissociative Electron
            Transfer to Carbon Tetrachloride .................. 197
     3.3.3. Stabilities of Ion-Radical Adducts as
            a Function of the Solvent ......................... 199
     3.3.4. Dependency of In-Cage Ion-Radical Interactions
            on the Leaving Group .............................. 200
3.4. Stepwise vs. Concerted Mechanisms ........................ 203
     3.4.1. Introduction ...................................... 203
     3.4.2. Diagnostic Criteria ............................... 204
     3.4.3. How Molecular Structure Controls the Mechanism .... 206
     3.4.4. Passage from One Mechanism to the Other upon
            Changing the Driving Force ........................ 209
     3.4.5. Photoinduced vs. Thermal Processes ................ 213
     3.4.6. Does a Concerted Mechanism Mean That the
            Intermediate "Does Not Exist"? .................... 216
     3.4.7. π and σ Ion Radicals. Competition Between
            Reaction Pathways ................................. 216
3.5. Cleavage of Ion Radicals. Reaction of Radicals with
     Nucleophiles ............................................. 218
     3.5.1. Introduction ...................................... 218
     3.5.2. Heterolytic Cleavages. Coupling of Radicals
            with Nucleophiles ................................. 218
     3.5.3. Homolytic Cleavages ............................... 225
3.6. Role of Solvent in Ion-Radical Cleavage and in
     Stepwise vs. Concerted Competitions ...................... 229
     3.6.1. Introduction ...................................... 229
     3.6.2. Experimental Clues ................................ 230
     3.6.3. A Simplified Model System ......................... 235
3.7. Dichotomy and Connections between SN2 Reactions
     and Dissociative Electron Transfers ...................... 239
     3.7.1. Introduction ...................................... 239
     3.7.2. Experimental Approaches ........................... 240
     3.7.3. Theoretical Aspects ............................... 244
     References and Notes ..................................... 248

CHAPTER 4 Molecular Catalysis of Electrochemical Reactions .... 251

4.1. Introduction ............................................. 251
4.2. Homogeneous Molecular Catalysis .......................... 252
     4.2.1. Contrasting Redox and Chemical Catalysis .......... 252
     4.2.2. The Reduction of Vicinal Dibromides. Outer- and
            Inner-Sphere Catalysts. Rates and
            Stereoselectivity ................................. 254
     4.2.3. Homogeneous Chemical Catalysis of the Reduction
            of Carbon Dioxide. Synergistic Effect of
            Bronsted and Lewis Acids .......................... 260
     4.2.4. Two-Step Chemical Catalysis of the Reduction of
            Alkyl Halides by Low-Valent Cobalamins and
            Cobinamides ....................................... 264
4.3. Supported Molecular Catalysis (Immobilized Catalysts) .... 268
     4.3.1. Redox and Chemical Catalysis at Monolayer and
            Multilayer Coated Electrodes ...................... 268
     4.3.2. Catalysis at Monolayer Coated Electrodes .......... 270
     4.3.3. Permeation Through Electrode Coatings.
            Inhibition ........................................ 279
     4.3.4. Electron Hopping in Assemblies of Redox Centers ... 284
     4.3.5. Catalysis at Multilayer Coated Electrodes ......... 287
     4.3.6. Combining an Electron-Shuttling Mediator with
            a Chemical Catalyst in a Multilayer Electrode
            Coating ........................................... 292
     References and Notes ..................................... 296

CHAPTER 5 Enzymatic Catalysis of Electrochemical Reactions .... 298

5.1. Introduction ............................................. 298
5.2. Homogeneous Enzymatic Catalysis .......................... 299
     5.2.1. Introduction ...................................... 299
     5.2.2. The Ping-Pong Mechanism. Kinetic Control by
            Substrate and/or Cosubstrate ...................... 300
     5.2.3. A Model Example: Glucose Oxidase with Excess
            Glucose ........................................... 306
     5.2.4. Molecular Recognition of an Enzyme by
            Artificial One-Electron Cosubstrates .............. 307
     5.2.5. Deciphering a Complex Electroenzymatic Response:
            Horseradish Peroxidase ............................ 311
5.3. Immobilized Enzymes in Monomolecular Layers .............. 315
     5.3.1. Introduction ...................................... 315
     5.3.2. The Ping-Pong Mechanism with an Immobilized
            Enzyme and the Cosubstrate in Solution ............ 315
     5.3.3. Antigen-Antibody Immobilization of Glucose
            Oxidase. Kinetic Analysis ......................... 323
     5.3.4. Application to the Kinetic Characterization
            of Biomolecular Recognition ....................... 325
     5.3.5. Immobilized Horseradish Peroxidase ................ 332
     5.3.6. Immobilization of Both the Enzyme and the
            Cosubstrate. Electron Transfer and Electron
            Transport in Integrated Systems ................... 336
5.4. Spatially Ordered Multimonomolecular Layered Enzyme
     Coatings ................................................. 340
     5.4.1. Step-by-Step Antigen-Antibody Construction of
            Multimonomolecular Layer Enzyme Coatings .......... 340
     5.4.2. Reaction Dynamics with the Cosubstrate in
            Solution. Evidence for Spatial Order .............. 342
     References and Notes ..................................... 346

CHAPTER 6 Appendixes .......................................... 348

6.1. Single Electron Transfer at an Electrode ................. 348
     6.1.1. Laplace Transformation. Useful Definitions and
            Relationships ..................................... 348
     6.1.2. Cyclic Voltammetry of One-Electron Nernstian
            Systems. Current- and Charge-Potential Curves ..... 348
     6.1.3. Double-Layer Charging in Cyclic Voltammetry.
            Oscillating and Nonoscillating Behavior ........... 353
     6.1.4. Effect of Ohmic Drop and Double-Layer Charging
            on Nernstian Cyclic Voltammograms ................. 357
     6.1.5. Potential Step and Double Potential Step
            Chronoamperometry of Nernstian Systems ............ 361
     6.1.6. Overlapping of Double-Layer Charging and
            Faradaic Currents in Potential Step and Double
            Potential Step Chronoamperometry. Oscillating
            and Nonoscillating Behavior ....................... 361
     6.1.7. Solvent Reorganization in Marcus-Hush Model ....... 363
     6.1.8. Effect of the Multiplicity of Electronic States
            in the Electrode .................................. 368
     6.1.9. Cyclic Voltammetry of Two-Electron Nernstian
            Systems. Disproportionation ....................... 371
6.2. Coupling of Homogeneous Chemical Reactions with
     Electron Transfer ........................................ 373
     6.2.1. The EC Mechanism .................................. 373
     6.2.2. The CE Mechanism .................................. 379
     6.2.3. Double Potential Step Responses for Processes
            Involving First- or Second-Order Follow-up
            Reactions ......................................... 382
     6.2.4. The ECE and DISP Mechanisms ....................... 383
     6.2.5. Electrodimerization ............................... 391
     6.2.6. Competition Between Dimerization of and
            Electron Transfer to Intermediates ................ 398
     6.2.7. Homogeneous Catalysis ............................. 403
     6.2.8. Product Distribution in Preparative
            Electrolysis ...................................... 414
6.3. Electron Transfer, Bond Breaking, and Bond Formation ..... 438
     6.3.1. Contribution of the Cleaving Bond Stretching to
            Internal Reorganization of the First Step of
            the Stepwise Mechanism ............................ 438
     6.3.2. Morse Curve Model of Intramolecular
            Dissociative Electron Transfer .................... 439
6.4. Analysis of Supported Molecular Catalysis by
     Rotating Disk Electrode Voltammetry and Cyclic
     Voltammetry .............................................. 441
     6.4.1. Catalysis at Monolayer Electrode Coatings ......... 441
     6.4.2. Inhibition of Electron Transfer at Partially
            Blocked Electrodes ................................ 444
     6.4.3. Equivalent Diffusion and Migration Laws for
            Electron Hopping Between Fixed Sites .............. 445
     6.4.4. Catalysis at Multilayered Electrode Coatings ...... 446
6.5. Enzymatic Catalysis Responses ............................ 452
     6.5.1. The Ping-Pong Mechanism in Homogeneous
            Enzymatic Catalysis ............................... 452
     6.5.2. Catalysis and Inhibition in Homogeneous Systems ... 457
     6.5.3. Catalysis at Multilayered Electrode Coatings ...... 462

References and Notes .......................................... 469

Glossary of Symbols ........................................... 470

Index ......................................................... 481


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:00 2019. Размер: 9,978 bytes.
Посещение N 1804 c 28.07.2009