Liu G. Mesh free methods (Boca Raton, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLiu G. Mesh free methods. Moving beyond the finite element method. - Boca Raton: CRC Press, 2003. - 691 p.: ill. - ISBN 0-8493-1238-8
 

Оглавление / Contents
 
1. Introduction ................................................. 1
   1.1. Defining Mesh Free Methods .............................. 1
   1.2. Need for MFree Methods .................................. 3
   1.3. The Idea of MFree Methods ............................... 4
   1.4. Outline of the Book ..................................... 4
2. Mesh Free Methods for Engineering Problems ................... 9
   2.1. Physical Phenomena in Engineering ....................... 9
   2.2. Solution Procedure ...................................... 9
   2.3. Modeling the Geometry .................................. 10
   2.4. Node Generation ........................................ 13
   2.5. Shape Function Creation ................................ 15
   2.6. Property of Material or Media .......................... 15
   2.7. Boundary, Initial, and Loading Conditions .............. 15
   2.8. Simulation ............................................. 16
        2.8.1. Discrete System Equations ....................... 16
        2.8.2. Equation Solvers ................................ 17
   2.9. Visualization .......................................... 18
   2.10.MFree Method Procedure ................................. 18
        2.10.1.Basic Steps ..................................... 19
        2.10.2.Determination of the Dimension of a Support
               Domain .......................................... 22
        2.10.3.Determination of the Average Nodal Spacing ...... 22
        2.10.4.Concept of the Influence Domain ................. 23
        2.10.5.Property of MFree Shape Functions ............... 24
   2.11.Remarks ................................................ 25
3. Mechanics of Solids and Structures .......................... 27
   3.1. Basics ................................................. 27
   3.2. Equations for Three-Dimensional Solids ................. 28
        3.2.1. Stress and Strain ............................... 28
        3.2.2. Constitutive Equations .......................... 32
        3.2.3. Dynamic Equilibrium Equations ................... 33
   3.3. Equations for Two-Dimensional Solids ................... 34
        3.3.1. Stress and Strain ............................... 34
        3.3.2. Constitutive Equations .......................... 36
        3.3.3. Dynamic Equilibrium Equations ................... 37
   3.4. Equations for Truss Members ............................ 37
        3.4.1. Stress and Strain ............................... 38
        3.4.2. Constitutive Equations .......................... 38
        3.4.3. Dynamic Equilibrium Equations ................... 38
   3.5. Equations for Beams .................................... 38
        3.5.1. Stress and Strain ............................... 39
        3.5.2. Constitutive Equations .......................... 40
        3.5.3. Moments and Shear Forces ........................ 40
        3.5.4. Dynamic Equilibrium Equations ................... 42
        3.5.5. Equations for Thick Beams ....................... 42
   3.6. Equations for Plates ................................... 43
        3.6.1. Thin Plates ..................................... 43
        3.6.2. Mindlin Plates .................................. 48
        3.6.3. Third-Order Theory of Plates .................... 50
   3.7. Remarks ................................................ 51
4. Principles for Weak Forms ................................... 53
   4.1. Strong Forms vs. Weak Forms ............................ 53
   4.2. Hamilton's Principle ................................... 54
   4.3. Constrained Hamilton's Principle ....................... 55
        4.3.1. Method of Lagrange Multipliers .................. 56
        4.3.2. Penalty Method .................................. 56
        4.3.3. Determination of Penalty Factor ................. 58
   4.4. Galerkin Weak Form ..................................... 58
   4.5. Constrained Galerkin Weak Form ......................... 61
        4.5.1. Galerkin Weak Form with Lagrange Multipliers .... 62
        4.5.2. Galerkin Weak Form with Penalty Factors ......... 62
   4.6. Minimum Total Potential Energy Principle ............... 62
   4.7. Weighted Residual Method ............................... 63
   4.8. Weighted Residual Method with Constraints .............. 64
   4.9. Points to Note ......................................... 65
   4.10.Remarks ................................................ 65
5. MFree Shape Function Construction ........................... 67
   5.1. Overview ............................................... 67
   5.2. Smoothed Particle Hydrodynamics Approach ............... 70
        5.2.1. Choice of Weight Function ....................... 72
        5.2.2. Consistency ..................................... 74
   5.3. Reproducing Kernel Particle Method ..................... 77
   5.4. Moving Least Squares Approximation ..................... 79
        5.4.1. MLS Procedure ................................... 79
        5.4.2. Consistency ..................................... 84
        5.4.3. Continuous Moving Least Square Approximation .... 86
   5.5. Point Interpolation Method ............................. 87
        5.5.1. Polynomial PIM .................................. 87
        5.5.2. Consistency ..................................... 90
        5.5.3. Properties of PIM Shape Functions ............... 91
        5.5.4. Difference between PIM Interpolation
               and MLS Approximation ........................... 94
        5.5.5. Methods to Avoid Singular Moment Matrix ......... 94
   5.6. Radial PIM ............................................. 96
        5.6.1. Rationale for Radial Basis Functions ............ 96
        5.6.2. PIM Formation Using Radial Basis Functions ...... 96
        5.6.3. Nonsingular Moment Matrix ....................... 98
        5.6.4. Consistency ..................................... 99
        5.6.5. Radial Functions with Dimensionless Shape
               Parameters ...................................... 99
   5.7. Radial PIM with Polynomial Reproduction ............... 101
        5.7.1. Rationale for Polynomials ...................... 101
        5.7.2. Formulation Using Radial-Polynomial Basis ...... 101
        5.7.3. Singularity Issue of the Transformed Moment
               Matrix ......................................... 104
        Example 5.1. Sample RPIM Shape Functions .............. 104
        Example 5.2. Effects of Shape Parameters of RBFs
                     on Shape Function ........................ 107
   5.8. Polynomial PIM with Coordinate Transformation ......... 107
        5.8.1. Coordinate Transformation ...................... 108
        5.8.2. Choice of Rotation Angle ....................... 109
   5.9. Matrix Triangularization Algorithm .................... 110
        5.9.1. MTA Procedure .................................. 1ll
        5.9.2. Normalization of the Support Domain ............ 112
        5.9.3. MTA Flowchart .................................. 113
        5.9.4. Test Examples .................................. 113
               Example 5.3. Interpolation Using 6 Nodes in
                            Parallel Lines .................... 113
               Example 5.4. Interpolation Using 12 Nodes in
                            Parallel Lines .................... 115
   5.10.Comparison Study via Examples ......................... 116
               Example 5.5. Comparison of Shape Functions
                            Obtained Using Different Methods
                            (ID Case) ......................... 116
               Example 5.6. Comparison of Shape Functions
                            Obtained Using Different Methods
                            (2D Case) ......................... 118
               Example 5.7. Curve Fitting Using MFree Shape
                            Functions ......................... 118
               Example 5.8. Effects of Shape Parameters on
                            the Condition Number of Moment
                            Matrices and Curve Fitting ........ 125
               Example 5.9. Surface Fitting Using MFree
                            Shape Functions (Effects of
                            Parameters) ....................... 130
               Example 5.10.Surface Fitting Using MFree
                            Shape Functions (Accuracy in
                            Derivatives of the Fitted
                            Surface) .......................... 137
               Example 5.11.Surface Fitting Using MFree
                            Shape Functions (Effects of the
                            Support Domain) ................... 138
   5.11.Compatibility of MFree Function Approximation ......... 138
   5.12.On the Concept of Reproduction ........................ 143
   5.13.Other Methods ......................................... 144
   5.14.Remarks ............................................... 144
6. Element Free Galerkin Method ............................... 147
   6.1. EFG Formulation with Lagrange Multipliers ............. 147
        6.1.1. Formulation .................................... 147
        6.1.2. EFG Procedure .................................. 156
        6.1.3. Background Integration ......................... 156
        6.1.4. Numerical Examples ............................. 158
               Example 6.1. Patch Test ........................ 158
               Example 6.2. Cantilever Beam (Numerical
                            Integration) ...................... 161
        6.1.5. Remarks ........................................ 168
   6.2. EFG with Penalty Method ............................... 169
        6.2.1. Formulation .................................... 169
        6.2.2. Penalty Method for Essential Boundary
               Conditions ..................................... 170
        6.2.3. Penalty Method for Continuity Conditions ....... 171
        6.2.4. Numerical Examples ............................. 174
               Example 6.3. Patch Test ........................ 174
               Example 6.4. Timoshenko Beam ................... 174
               Example 6.5. Cantilever Beam of Bi-Material .... 178
               Example 6.6. Sandwich Composite Beam ........... 179
        6.2.5. Remarks ........................................ 181
   6.3. Constrained Moving Least Square Method for EFG ........ 181
        6.3.1. Formulation .................................... 182
        6.3.2. Constrained Surfaces Generated by CMLS ......... 185
               Example 6.7. Linear Constraint ................. 185
               Example 6.8. Parabolic Constraint .............. 185
        6.3.3. Weak Form and Discrete Equations ............... 188
        6.3.4. Examples for Mechanics Problems ................ 189
               Example 6.9. Patch Test ........................ 189
               Example 6.10.Cantilever Beam ................... 190
               Example 6.11.Hole in an Infinite Plate ......... 191
        6.3.5. Computational Time ............................. 195
        6.3.6. Remarks ........................................ 197
   6.4. EFG for Nonlinear Elastic Problems .................... 198
        6.4.1. Basic Equations ................................ 198
        6.4.2. Weak Form for Nonlinear Elastic Problems ....... 200
        6.4.3. Discretization and Numerical Strategy .......... 200
        6.4.4. Numerical Procedure ............................ 201
        6.4.5. Numerical Example .............................. 202
               Example 6.12. Soil Foundation .................. 202
        6.4.6. Remarks ........................................ 208
   6.5. Summary ............................................... 210
7. Meshless Local Petrov-Galerkin Method ...................... 211
   7.1. MLPG Formulation ...................................... 212
        7.1.1. The Idea of MLPG ............................... 212
        7.1.2. Formulation of MLPG ............................ 213
        7.1.3. Types of Domains ............................... 217
        7.1.4. Procedures for Essential Boundary Conditions ... 218
        7.1.5. Numerical Investigation ........................ 219
        7.1.6. Examples ....................................... 220
               Example 7.1. Patch Test ........................ 220
               Example 7.2.High-Order Patch Test .............. 221
               Example 7.3.Cantilever Beam .................... 223
               Example 7.4.Infinite Plate with a Circular
                           Hole ............................... 226
               Example 7.5.Half-Plane Problem ................. 226
   7.2. MLPG for Dynamic Problems ............................. 229
        7.2.1. Statement of the Problem ....................... 229
        7.2.2. Free-Vibration Analysis ........................ 230
        7.2.3. Imposition of Essential Boundary Conditions
               for Free Vibration ............................. 232
        7.2.4. Numerical Examples ............................. 233
               Example 7.6. Cantilever Beam ................... 233
               Example 7.7. Cantilever Beam with Variable
                            Cross Section ..................... 236
               Example 7.8. Shear Wall ........................ 236
        7.2.5. Forced Vibration Analysis ...................... 237
        7.2.6. Direct Analysis of Forced Vibration ............ 239
        7.2.7. Numerical Examples ............................. 240
               Example 7.9. Cantilever Beam ................... 240
               Example 7.9a.Simple Harmonic Loading ........... 241
               Example 7.9b.Transient Loading ................. 244
   7.3. Remarks ............................................... 246
8. Point Interpolation Methods ................................ 249
   8.1. Polynomial Point Interpolation Method ................. 250
        8.1.1. Domain Discretization .......................... 250
        8.1.2. Enclosure of Nodes ............................. 251
        8.1.3. Variational Form of Galerkin PIM ............... 253
        8.1.4. Comparison of PIM, EFG, and FEM ................ 255
        8.1.5. Numerical Examples ............................. 256
               Example 8.1. Patch Test ........................ 256
               Example 8.2. Cantilever Beam ................... 258
               Example 8.3. Hole in an Infinite Plate ......... 263
               Example 8.4. Bridge Pier ....................... 264
        8.1.6. Remarks ........................................ 265
   8.2. Application of PIM to Foundation Consolidation
        Problem ............................................... 266
        8.2.1. Biot's Consolidation Theory and Its Weak
               Form ........................................... 266
        8.2.2. Discretization of Weak Form .................... 268
        8.2.3. Numerical Examples ............................. 270
               Example 8.5. One-Dimensional Consolidation
                            Problem ........................... 270
               Example 8.6. Two-Dimensional Consolidation
                            Problem ........................... 274
   8.3. Radial Point Interpolation Method ..................... 276
        8.3.1. Key Considerations ............................. 276
        8.3.2. Numerical Examples ............................. 281
               Example 8.7. Patch Test ........................ 281
               Example 8.8. Cantilever Beam ................... 282
               Example 8.9. Infinite Plate with a Hole ........ 292
               Example 8.10.Parallel Tunnel ................... 297
        8.3.3. Remarks ........................................ 299
   8.4. Local Point Interpolation Method (LPIM) ............... 300
        8.4.1. LPIM Formulation ............................... 301
        8.4.2. Weight Function ................................ 302
        8.4.3. Numerical Examples ............................. 303
               Example 8.11.Standard Patch Test (LPIM +
                            MTA) .............................. 303
               Example 8.12.Higher-Order Patch Test ........... 305
               Example 8.13.Cantilever Beam ................... 306
               Example 8.14.Infinite Plate with a Hole ........ 311
               Example 8.15.Stress Distribution in a Dam ...... 312
        8.4.4. Remarks ........................................ 313
   8.5. Local Radial Point Interpolation Method ............... 314
        8.5.1. Examples of Static Problems .................... 314
               Example 8.16.Patch Test ........................ 315
               Example 8.17.High-Order Patch Test ............. 315
               Example 8.18.Cantilever Beam ................... 316
               Example 8.19.Infinite Plate with a Circular
                            Hole .............................. 322
               Example 8.20.Half-Plane Problem ................ 323
        8.5.2. Examples of Dynamic Problems ................... 323
               Example 8.21.Cantilever Beam ................... 324
               Example 8.22.Free Vibration Analysis of
                            a Shear Wall ...................... 334
        8.5.3. Remarks ........................................ 334
   8.6. Application of LRPIM to Diffusion Equations ........... 335
        8.6.1. Terzaghi's Consolidation Theory ................ 335
        8.6.2. Discretized System Equation in the Time
               Domain ......................................... 337
        8.6.3. Numerical Example .............................. 338
               Example 8.23.Two-Dimensional Foundation ........ 338
   8.7. Comparison Study ...................................... 339
        8.7.1. Convergence Comparison ......................... 339
               Example 8.24.Cantilever Beam (Convergence
                            of LPIM-MTA, MQ-LRPIM, and
                            MLPG) ............................. 339
        8.7.2. Efficiency Comparison. 341
               Example 8.25.Cantilever Beam (Efficiency of
                            LPIM-MTA, MQ-LRPIM, and MLPG) ..... 341
   8.8. Summary ............................................... 341
9. Mesh Free Methods for Fluid Dynamics Problems .............. 345
   9.1. Introduction .......................................... 345
   9.2. Smoothed Particle Hydrodynamics Method ................ 346
        9.2.1. SPH Basics ..................................... 347
        9.2.2. SPH Formulations for Navier-Stokes Equation .... 348
        9.2.3. Major Numerical Implementation Issues .......... 352
        9.2.4. SPH Code Structure ............................. 359
        9.2.5. Applications ................................... 359
               Example 9.1. Poiseuille Flow ................... 361
               Example 9.2. Couette Flow ...................... 361
               Example 9.3. Shear-Driven Cavity Problem ....... 362
               Example 9.4. Free Surface Flows ................ 362
               Example 9.5. Explosion in Vacuum ............... 365
               Example 9.6. Simulation of Explosion
                            Mitigated by Water ................ 366
        9.2.6. Remarks ........................................ 368
   9.3. Local Petrov-Galerkin Method .......................... 369
        9.3.1. MLPG Formulation ............................... 369
        9.3.2. Numerical Integration in MLPG .................. 370
        9.3.3. Governing Equations and Their Discretized
               Form ........................................... 376
        9.3.4. Boundary Condition for Vorticity ............... 378
        9.3.5. Numerical Results and Discussion ............... 379
               Example 9.7. Natural Convection in a Square
                            Cavity Problem .................... 379
        9.3.6. Remarks ........................................ 381
   9.4. Local Radial Point Interpolation Method ............... 382
        9.4.1. LRPIM Formulation .............................. 383
        9.4.2. Implementation Issue in LRPIM for CFD
               Problems ....................................... 383
        9.4.3. Numerical Results and Discussion ............... 384
               Example 9.8. Natural Convection in a Square
                            Cavity ............................ 384
               Example 9.9. Natural Convection in
                            a Concentric Annulus .............. 386
        9.4.4. Remarks ........................................ 388
10.Mesh Free Methods for Beams ................................ 391
   10.1. PIM Shape Function for Thin Beams .................... 392
         10.1.1.Formulation ................................... 392
         10.1.2.Example ....................................... 394
                Example 10.1.PIM Shape Functions for Thin
                Beams ......................................... 394
   10.2. Elastostatic Analysis of Thin Beams .................. 396
         10.2.1.Local Weighted Residual Weak Form ............. 396
         10.2.2.Discretized System Equations .................. 398
         10.2.3.Numerical Example for Static Problems ......... 399
               Example 10.2.Simply-Simply Supported Beams
                            under Various Loads ............... 399
               Example 10.3.Beams under Uniformly
                            Distributed Load with Different
                            Boundary Conditions ............... 401
   10.3.Buckling Analysis of Thin Beams (Eigenvalue
        Problem) .............................................. 403
        10.3.1.Local Weak Form ................................ 403
        10.3.2.Discretized System Equations ................... 403
        10.3.3.Numerical Example .............................. 404
               Example 10.4.Bulking Analysis of Thin Beams .... 404
   10.4.Free-Vibration Analysis of Thin Beams (Eigenvalue
        Problem) .............................................. 405
        10.4.1.Local Weak Form ................................ 405
        10.4.2.Discretized System Equations ................... 405
        10.4.3.Numerical Results .............................. 406
               Example 10.5.Free-Vibration Analysis of
                            Thin Beams ........................ 406
   10.5.Forced Vibration Analysis of Thin Beams (Time-
        Dependent Problem) .................................... 408
        10.5.1.Local Weak Form ................................ 408
        10.5.2.Discretized System Equations ................... 409
        10.5.3.Numerical Results .............................. 410
               Example 10.6.Vibration of a Pinned-Pinned
                            Thin Uniform Beam Subject to
                            Harmonic Loading .................. 410
               Example 10.7.Vibration of a Pinned-Pinned
                            Thin Uniform Beam Subject to
                            Transient Loading ................. 411
   10.6.Timoshenko Beams ...................................... 413
        10.6.1.Local Weak Form ................................ 414
        10.6.2.Discretized System Equations ................... 415
        10.6.3.Numerical Example .............................. 416
               Example 10.8.Static Deflection of Timoshenko
                            Beams ............................. 416
   10.7.Remarks ............................................... 419
11.Mesh Free Methods for Plates ............................... 421
   11.1.EFG Method for Thin Plates ............................ 421
        11.1.1.Approximation of Deflection .................... 422
        11.1.2.Variational Forms .............................. 423
        11.1.3.Discrete Equations ............................. 425
        11.1.4.Eigenvalue Problem ............................. 429
        11.1.5.Numerical Examples ............................. 431
               Example 11.1.Static Deflection of
                            Rectangular Thin Plates ........... 431
               Example 11.2.Natural Frequency Analysis of
                            Thin Square Plates ................ 433
               Example 11.3.Natural Frequency Analysis of
                            Elliptical Plates ................. 435
               Example 11.4.Natural Frequency Analysis of
                            Polygonal Plates .................. 435
               Example 11.5.Natural Frequency Analysis of
                            a Plate of Complex Shape .......... 437
   11.2.EFG Method for Thin Composite Laminates ............... 439
        11.2.1.Governing Equation for Buckling ................ 440
        11.2.2.Discretized Equation for Buckling Analysis ..... 442
        11.2.3.Discretized Equation for Free-Vibration
               Analysis ....................................... 444
        11.2.4.Numerical Examples for Buckling Analysis ....... 444
               Example 11.6.Static Buckling of Rectangular
                            Plates (Validation) ............... 444
               Example 11.7.Static Buckling of a Square
                            Plate (Efficiency) ................ 446
               Example 11.8.Static Buckling of a Plate with
                            Complicated Shape (Application) ... 447
               Example 11.9.Static Buckling of a Laminated
                            Plate (Application) ............... 448
        11.2.5.Numerical Examples for Free-Vibration
               Analysis ....................................... 449
               Example 11.10.Frequency Analysis of Free
                            Vibration of Orthotropic
                            Square Plates ..................... 449
               Example 11.11.Natural Frequency Analysis of
                            Composite Laminated Plates ........ 451
   11.3.EFG Method for Thick Plates ........................... 457
        11.3.1.Field Variables for Thick Plates ............... 458
        11.3.2.Approximation of Field Variables ............... 459
        11.3.3.Variational Forms of System Equations .......... 460
        11.3.4.Discrete System Equations ...................... 461
        11.3.5.Discrete Form of Essential Boundary
               Conditions ..................................... 462
        11.3.6.Equations for Static Deformation Analysis ...... 464
        11.3.7.Numerical Examples of Static Deflection
               Analyses ....................................... 465
               Example 11.12.Comparison of Deflection of
                            Thin and Thick Square Plates
                            with Different Types of
                            Boundary Conditions ............... 465
               Example 11.13.Convergence of Deflection of
                            a Thin Square Plate ............... 466
               Example 11.14.Convergence of Deflection of a
                            Thick Square Plate ................ 466
               Example 11.15.Maximum Deflections of Thick
                            Plates under Several Kinds of
                            Boundaries ........................ 467
               Example 11.16.Elimination of Shear Locking ..... 467
        11.3.8.Numerical Examples of Vibration Analyses ....... 470
               Example 11.17.Frequency Analysis of Thick
                            Plates (FSDT) ..................... 471
               Example 11.18.Frequency Analysis of Thick
                            Plates (FSDT and TSDT) ............ 471
        11.3.9.Numerical Examples of Vibration Analyses ....... 472
               Example 11.19.Buckling Analysis of Thick
                            Plates (FSDT and TSDT) ............ 472
               Example 11.20.Buckling Loads of a Square
                            Plate Based on FSDT and TSDT
                            with Different Loads and
                            Boundaries ........................ 472
               Example 11.21.Buckling Loads of a Square
                            Plate with a Circular Hole
                            Based on FSDT and TSDT ............ 473
   11.4.RPIM for Thick Plates ................................. 475
        11.4.1.Formulation .................................... 475
        11.4.2.Numerical Examples ............................. 475
               Example 11.22.Deflection of a Thick Square
                            Plate   (Effects of the EXP
                            Shape Parameters) ................. 476
               Example 11.23.Deflection of a Thick Square
                            Plate (Effects of the MQ Shape
                            Parameters) ....................... 478
               Example 11.24.Deflection of a Thick Square
                            Plate (Effects of Polynomial
                            Terms) ............................ 481
               Example 11.25.Deflection of a Thick Square
                            Plate (Convergence of Maximum
                            Deflections) ...................... 483
               Example 11.26.Deflection of a Thick Square
                            Plate (Effects of Irregularly
                            Distributed Nodes) ................ 484
               Example 11.27.Deflection of a Thick Square
                            Plate (Effects of Shear
                            Locking) .......................... 484
   11.5.MLPG for Thin Plates .................................. 486
        11.5.1.Governing Equations ............................ 486
        11.5.2.Local Weak Form of MLPG ........................ 487
        11.5.3.Discretized System Equations ................... 488
        11.5.4.Weight Function ................................ 490
        11.5.5.Numerical Integration .......................... 490
        11.5.6.Numerical Examples ............................. 491
               Example 11.28.Static Analysis of Thin Square
                            Plates ............................ 491
               Example 11.29.Square Plate under Different
                            Load with Different Support ....... 494
               Example 11.30.Static Analysis of Thin
                            Rectangular Plates ................ 497
               Example 11.31.Static Deflection Analysis of
                            a Circular Plate .................. 497
               Example 11.32.Free-Vibration Analysis of
                            Thin Plates ....................... 498
   11.6.Remarks ............................................... 499
12.Mesh Free Methods for Shells ............................... 501
   12.1.EFG Method for Spatial Thin Shells .................... 502
        12.1.1.Moving Least Squares Approximation ............. 502
        12.1.2.Governing Equation for Thin Shell .............. 503
        12.1.3.Strain-Displacement Relations .................. 506
        12.1.4.Principle of Virtual Work ...................... 507
        12.1.5.Surface Approximation .......................... 508
        12.1.6.Discretized Equations .......................... 508
        12.1.7.Static Analysis ................................ 509
        12.1.8.Free Vibration ................................. 509
        12.1.9.Forced (Transient) Vibration ................... 510
        12.1.10.Numerical Example for Static Problems ......... 511
               Example 12.1.Static Deflection of a Barrel
                            Vault Roof under Gravity Force .... 511
        12.1.11.Numerical Examples for Free Vibration of
               Thin Shells .................................... 514
               Example 12.2.Free Vibration of a Clamped
                            Cylindrical Shell Panel ........... 514
               Example 12.3.Free Vibration of a
                            Hyperbolical Shell ................ 517
               Example 12.4.Free Vibration of a Cylindrical
                            Shell ............................. 517
        12.1.12.Numerical Examples for Forced Vibration of
               Thin Shells .................................... 519
               Example 12.5.Clamped Circular Plate Subject
                            to an Impulsive Load .............. 519
               Example 12.6.Clamped Cylindrical Shell
                            Subject to a Sine Load ............ 519
               Example 12.7.Clamped Spherical Shell Subject
                            to a Sine Curve Load .............. 521
        12.1.13.Remarks ....................................... 523
   12.2.EFG Method for Thick Shells ........................... 523
        12.2.1.Fundamental Relations .......................... 523
        12.2.2.Principle of Virtual Work ...................... 524
        12.2.3.Numerical Examples ............................. 525
               Example 12.8.Static Deflection of a Barrel
                            Vault Roof under Gravity Force .... 525
               Example 12.9.Pinched Cylindrical Shell ......... 526
               Example 12.10.Pinched Hemispherical Shell ...... 530
        12.2.4.Remarks ........................................ 532
   12.3.RPIM for Thick Shells ................................. 534
        12.3.1.Formulation Procedure .......................... 534
        12.3.2.Numerical Examples ............................. 534
               Example 12.11.Barrel Vault Roof ................ 534
               Example 12.12.Pinched Cylindrical Shell ........ 541
               Example 12.13.Pinched Hemispherical Shell ...... 541
        12.3.3.Remarks ........................................ 543
   12.4.Summary ............................................... 544
13.Boundary Mesh Free Methods ................................. 545
   13.1.BPIM Using Polynomial Basis ........................... 546
        13.1.1.Point Interpolation on Curves .................. 546
        13.1.2.Discrete Equations of BPIM ..................... 549
        13.1.3.Implementation Issues in BPIM .................. 550
        13.1.4.Numerical Examples ............................. 551
               Example 13.1.Cantilever Beam ................... 551
               Example 13.2.Plate with a Hole ................. 553
               Example 13.3.A Rigid Flat Punch on a Semi-
                            Infinite Foundation ............... 554
   13.2.BPIM Using Radial Function Basis ...................... 557
        13.2.1.Radial Basis Point Interpolation ............... 557
        13.2.2.BRPIM Formulation .............................. 558
        13.2.3.Comparison of BPIM, BNM, and BEM ............... 559
        13.2.4.Numerical Examples.............................. 560
               Example 13.4.Cantilever Beam ................... 560
               Example 13.5.Plate with a Hole ................. 562
               Example 13.6.Internally Pressurized Hollow
                            Cylinder .......................... 563
   13.3.Remarks ............................................... 565
14.Mesh Free Methods Coupled with Other Methods ............... 567
   14.1.Coupled EFG/BEM ....................................... 567
        14.1.1.Basic Equations of Elastostatics ............... 568
        14.1.2.Discrete Equations of EFG ...................... 568
        14.1.3.BE Formulation ................................. 569
        14.1.4.Coupling of EFG and BE System Equations ........ 570
        14.1.5.Numerical Results .............................. 574
               Example 14.1.Cantilever Beam ................... 574
               Example 14.2.Hole in an Infinite Plate ......... 576
               Example 14.3.A Structure on a Semi-Infinite
                            Soil Foundation ................... 579
   14.2.Coupled EFG and Hybrid BEM ............................ 580
        14.2.1.EFG Formulation ................................ 582
        14.2.2.Hybrid Displacement BE Formulation ............. 583
        14.2.3.Coupling of EFG and HBE ........................ 584
        14.2.4.Numerical Results .............................. 586
               Example 14.4.Cantilever Beam ................... 587
               Example 14.5.Hole in an Infinite Plate ......... 587
               Example 14.6.Structure on a Semi-Infinite
                            Foundation ........................ 588
   14.3.Coupled MLPG/FE/BE Methods ............................ 589
        14.3.1.MLPG Formulation ............................... 590
        14.3.2.FE Formulation ................................. 590
        14.3.3.Coupling of MLPG and FE or BE .................. 591
        14.3.4.Numerical Results .............................. 593
               Example 14.7.Cantilever Beam ................... 593
               Example 14.8.Hole in an Infinite Plate ......... 594
               Example 14.9.Internal Pressurized Hollow
                            Cylinder .......................... 595
               Example 14.10.A Structure on a Semi-Infinite
                            Foundation ........................ 596
   14.4.Remarks ............................................... 599
15.Implementation Issues ...................................... 601
   15.1.Definition of the Support Domain or Influence
        Domain ................................................ 601
   15.2.Triangular Mesh and Size of the Influence Domain ...... 602
   15.3.Node Numbering and Bandwidth of the Stiffness
        Matrix ................................................ 603
   15.4.Bucket Algorithm for Node Searching ................... 604
   15.5.Relay Model for Domains with Irregular Boundaries ..... 605
        15.5.1.Problem Statement .............................. 605
        15.5.2.Visibility Method .............................. 607
        15.5.3.Diffraction Method ............................. 607
        15.5.4.Transparency Method ............................ 609
        15.5.5.The Relay Model ................................ 610
   15.6.Adaptive Procedure Based on Background Cells .......... 625
        15.6.1.Issues of Adaptive Analysis .................... 625
        15.6.2.Existing Error Estimates ....................... 628
        15.6.3.Cell Energy Error Estimate ..................... 628
        15.6.4.Numerical Examples ............................. 631
               Example 15.1.Cantilever Beam (Error
                            Estimation) ....................... 631
               Example 15.2.Infinite Plate with a Circular
                            Hole (Error Estimation) ........... 631
               Example 15.3.A Square Plate Containing
                            a Crack ........................... 634
   15.7.Strategy for Local Adaptive Refinement ................ 634
        15.7.1.Update of the Density Factor ................... 636
        15.7.2.Local Delaunay Triangulation Algorithm ......... 636
               Example 15.4.Infinite Plate with a Circular
                            Hole (Adaptive Analysis) .......... 638
               Example 15.5.Square Plate with a Square Hole
                            (Adaptive Analysis) ............... 638
               Example 15.6.Square Plate with a Crack
                            (Adaptive Analysis) ............... 638
               Example 15.7.Square Plate with Two
                            Parallel Cracks (Adaptive
                            Analysis) ......................... 638
               Example 15.8.Arbitrary Complex Domain
                            (Adaptive Analysis) ............... 638
   15.8.Remarks ............................................... 644
16.MFree2D© ................................................... 645
   16.1.Overview .............................................. 645
   16.2.Techniques Used in MFree2D ............................ 646
   16.3.Preprocessing in MFree2D .............................. 646
        16.3.1.Main Windows ................................... 647
        16.3.2.Geometry Creation .............................. 648
        16.3.3.Boundary Conditions and Loads .................. 650
        16.3.4.Modify and Delete Boundary Conditions and
               Loads .......................................... 654
        16.3.5.Node Generation ................................ 655
        16.3.6.Materials Property Input ....................... 656
        16.3.7.Miscellaneous .................................. 661
   16.4.Postprocessing in MFree2D ............................. 661
        16.4.1.Start of MFreePost ............................. 661
        16.4.2.Window of MFreePost ............................ 661
   References ................................................. 675
   Index ...................................................... 685


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:00 2019. Размер: 45,536 bytes.
Посещение N 2591 c 28.07.2009