Handbook of Teichmuller theory; 2 (Zurich, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of Teichmüller theory. Vol.2 / ed. by Papadopoulos A. - Zürich: European Mathematical Society, 2009. - ix, 874 p.: ill. - (IRMA lectures in mathematics and theoretical physics; 13) - ISBN 978-3-03719-055-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ........................................................ v

Introduction to Teichmuller theory, old and new, II
   by Athanase Papadopoulos ..................................... 1


Part A. The metric and the analytic theory, 2


Chapter 1. The Weil-Petersson metric geometry
              by Scott A. Wolpert .............................. 47

Chapter 2. Infinite dimensional Teichmuller spaces
              by Alastair Fletcher and Vladimir Markovic ....... 65

Chapter 3. A construction of holomorphic families of Riemann
           surfaces over the punctured disk with given
           monodromy
              by Yoichi Imayoshi ............................... 93

Chapter 4. The uniformization problem
              by Robert Silhol ................................ 131

Chapter 5. Riemann surfaces, ribbon graphs and
           combinatorial classes 
              by Gabriele Mondello ............................ 151

Chapter 6. Canonical 2-forms on the moduli space of Riemann
           surfaces
              by Nariya Kawazumi .............................. 217


Part B. The group theory, 2


Chapter 7. Quasi-homomorphisms on mapping class groups
              by Koji Fujiwara ................................ 241

Chapter 8. Lefschetz fibrations on 4-manifolds
              by Mustafa Korkmaz and Andras I. Stipsicz ....... 271

Chapter 9. Introduction to measurable rigidity of mapping
           class groups
              by Yoshikata Kida ............................... 297

Chapter 10.Affine groups of fiat surfaces
              by Martin Möller ................................ 369

Chapter 11.Braid groups and Artin groups
              by Luis Paris ................................... 389


Part C. Representation spaces and geometric structures, 1


Chapter 12.Complex projective structures
              by David Dumas .................................. 455

Chapter 13.Circle packing and Teichmuller space
              by Sadayoshi Kojima ............................. 509

Chapter 14.(2+1) Einstein spacetimes of finite type
              by Riccardo Benedetti and Francesco Bonsante .... 533

Chapter 15.Trace coordinates on Fricke spaces of some
           simple hyperbolic surfaces 
              by William M. Goldman ........................... 611

Chapter 16.Spin networks and SL(2, C)-character varieties
              by Sean Lawton and Elisha Peterson .............. 685


Part D. The Grothendieck-Teichmuller theory


Chapter 17.Grothendieck's reconstruction principle and
           2-dimensional topology and geometry
              by Feng Luo ..................................... 733

Chapter 18.Dessins d'enfants and origami curves
           by Frank Herrlich and Gabriela Schmithüsen ........ 767

Chapter 19.The Teichmuller theory of the solenoid
              by Dragomir Saric ............................... 811

List of Contributors .......................................... 857

Index ......................................................... 859


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:00 2019. Размер: 6,994 bytes.
Посещение N 2073 c 28.07.2009