Foreword ........................................................ v
Introduction to Teichmuller theory, old and new, II
by Athanase Papadopoulos ..................................... 1
Part A. The metric and the analytic theory, 2
Chapter 1. The Weil-Petersson metric geometry
by Scott A. Wolpert .............................. 47
Chapter 2. Infinite dimensional Teichmuller spaces
by Alastair Fletcher and Vladimir Markovic ....... 65
Chapter 3. A construction of holomorphic families of Riemann
surfaces over the punctured disk with given
monodromy
by Yoichi Imayoshi ............................... 93
Chapter 4. The uniformization problem
by Robert Silhol ................................ 131
Chapter 5. Riemann surfaces, ribbon graphs and
combinatorial classes
by Gabriele Mondello ............................ 151
Chapter 6. Canonical 2-forms on the moduli space of Riemann
surfaces
by Nariya Kawazumi .............................. 217
Part B. The group theory, 2
Chapter 7. Quasi-homomorphisms on mapping class groups
by Koji Fujiwara ................................ 241
Chapter 8. Lefschetz fibrations on 4-manifolds
by Mustafa Korkmaz and Andras I. Stipsicz ....... 271
Chapter 9. Introduction to measurable rigidity of mapping
class groups
by Yoshikata Kida ............................... 297
Chapter 10.Affine groups of fiat surfaces
by Martin Möller ................................ 369
Chapter 11.Braid groups and Artin groups
by Luis Paris ................................... 389
Part C. Representation spaces and geometric structures, 1
Chapter 12.Complex projective structures
by David Dumas .................................. 455
Chapter 13.Circle packing and Teichmuller space
by Sadayoshi Kojima ............................. 509
Chapter 14.(2+1) Einstein spacetimes of finite type
by Riccardo Benedetti and Francesco Bonsante .... 533
Chapter 15.Trace coordinates on Fricke spaces of some
simple hyperbolic surfaces
by William M. Goldman ........................... 611
Chapter 16.Spin networks and SL(2, C)-character varieties
by Sean Lawton and Elisha Peterson .............. 685
Part D. The Grothendieck-Teichmuller theory
Chapter 17.Grothendieck's reconstruction principle and
2-dimensional topology and geometry
by Feng Luo ..................................... 733
Chapter 18.Dessins d'enfants and origami curves
by Frank Herrlich and Gabriela Schmithüsen ........ 767
Chapter 19.The Teichmuller theory of the solenoid
by Dragomir Saric ............................... 811
List of Contributors .......................................... 857
Index ......................................................... 859
|