Foreword ........................................................ v
Introduction to Teichmiiller theory, old and new
by Athanase Papadopoulos ..................................... 1
Part A. The metric and the analytic theory, 1
Chapter 1. Harmonic maps and Teichmiiller theory
by Georgios D. Daskalopoulos and Richard A.
Wentworth ........................................ 33
Chapter 2. On Teichmuller's metric and Thurston's asymmetric
metric on Teichmiiller space
by Athanase Papadopoulos and Guillaume Theret ... 1ll
Chapter 3. Surfaces, circles, and solenoids
by Robert C. Penner ............................. 205
Chapter 4. About the embedding of Teichmiiller space in
the space of geodesic Holder distributions
by Jean-Pierre Otal ............................. 223
Chapter 5. Teichmiiller spaces, triangle groups and
Grothendieck dessins by William J. Harvey ....... 249
Chapter 6. On the boundary of Teichmiiller disks in
Teichmiiller and in Schottky space
by Frank Herrlich and Gabriela Schmithiisen ..... 293
Part B. The group theory, 1
Chapter 7. Introduction to mapping class groups of surfaces
and related groups
by Shigeyuki Morita ............................. 353
Chapter 8. Geometric survey of subgroups of mapping class
groups
by Lee Mosher ................................... 387
Chapter 9. Deformations of Kleinian groups
by Albert Marden ................................ 411
Chapter 10.Geometry of the complex of curves and of
Teichmuller space
by Ursula Hamenstadt ............................ 447
Part C. Surfaces with singularities and discrete Riemann
surfaces
Chapter 11.Parameters for generalized Teichmuller spaces
by Charalampos Charitos and Ioannis
Papadoperakis ................................... 471
Chapter 12.On the moduli space of singular euclidean
surfaces
by Marc Troyanov ................................ 507
Chapter 13.Discrete Riemann surfaces
by Christian Mercat ............................. 541
Part D. The quantum theory, 1
Chapter 14.On quantizing Teichmuller and Thurston
theories
by Leonid O. Chekhov and Robert C. Penner ....... 579
Chapter 15.Dual Teichmuller and lamination spaces
by Vladimir V. Fock and Alexander B.
Goncharov ....................................... 647
Chapter 16.An analog of a modular functor from quantized
Teichmuller theory
by Jörg Teschner ................................ 685
Chapter 17.On quantum moduli space of flat PSL2OR -
connections
by Rinat M. Kashaev ............................. 761
List of Contributors .......................................... 783
Index ......................................................... 785
|