Handbook of Teichmuller theory; 1 (Zurich, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of Teichmüller theory. Vol.1 / ed. by Papadopoulos A. - Zürich: European Mathematical Society, 2007. - viii, 794 p.: ill. - (IRMA lectures in mathematics and theoretical physics; 11). - ISBN 978-3-03719-029-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ........................................................ v

Introduction to Teichmiiller theory, old and new
   by Athanase Papadopoulos ..................................... 1


Part A. The metric and the analytic theory, 1


Chapter 1. Harmonic maps and Teichmiiller theory
              by Georgios D. Daskalopoulos and Richard A.
              Wentworth ........................................ 33

Chapter 2. On Teichmuller's metric and Thurston's asymmetric
           metric on Teichmiiller space
              by Athanase Papadopoulos and Guillaume Theret ... 1ll

Chapter 3. Surfaces, circles, and solenoids
              by Robert C. Penner ............................. 205

Chapter 4. About the embedding of Teichmiiller space in
           the space of geodesic Holder distributions
              by Jean-Pierre Otal ............................. 223

Chapter 5. Teichmiiller spaces, triangle groups and
              Grothendieck dessins by William J. Harvey ....... 249

Chapter 6. On the boundary of Teichmiiller disks in
           Teichmiiller and in Schottky space
              by Frank Herrlich and Gabriela Schmithiisen ..... 293


Part B. The group theory, 1


Chapter 7. Introduction to mapping class groups of surfaces
           and related groups
              by Shigeyuki Morita ............................. 353

Chapter 8. Geometric survey of subgroups of mapping class
           groups
              by Lee Mosher ................................... 387

Chapter 9. Deformations of Kleinian groups
              by Albert Marden ................................ 411

Chapter 10.Geometry of the complex of curves and of
           Teichmuller space
              by Ursula Hamenstadt ............................ 447


Part C. Surfaces with singularities and discrete Riemann
        surfaces


Chapter 11.Parameters for generalized Teichmuller spaces
              by Charalampos Charitos and Ioannis
              Papadoperakis ................................... 471

Chapter 12.On the moduli space of singular euclidean
           surfaces
              by Marc Troyanov ................................ 507

Chapter 13.Discrete Riemann surfaces
              by Christian Mercat ............................. 541


Part D. The quantum theory, 1


Chapter 14.On quantizing Teichmuller and Thurston
           theories
              by Leonid O. Chekhov and Robert C. Penner ....... 579

Chapter 15.Dual Teichmuller and lamination spaces
              by Vladimir V. Fock and Alexander B.
              Goncharov ....................................... 647

Chapter 16.An analog of a modular functor from quantized
           Teichmuller theory
              by Jörg Teschner ................................ 685

Chapter 17.On quantum moduli space of flat PSL2OR -
           connections
              by Rinat M. Kashaev ............................. 761

List of Contributors .......................................... 783

Index ......................................................... 785


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:58 2019. Размер: 6,988 bytes.
Посещение N 2070 c 28.07.2009