1. Introduction ................................................. 1
2. Network Organization of Collaborative Research Centres
for Scientific Efficiency Enhancement ........................ 3
Dieter Jacob, Gottfried Sachs, and Siegfried Wagner
2.1. Introduction ............................................... 3
2.2. Organization of Collaboration .............................. 4
2.3. Efficiency Enhancement in Research ......................... 4
2.4. Efficiency Enhancement in Teaching and Education ........... 5
2.5. Internationalization ....................................... 6
2.6. Final Remarks .............................................. 7
3. Overall Design Aspects ....................................... 9
3.1. Conceptual Design of Winged Reusable Two-Stage-to-Orbit
Space Transport Systems .................................... 9
Stefan Lentz, Mirko Hornung, and Werner Staudacher
3.1.1. Background and Introduction ......................... 9
3.1.2. Concepts for Reusable Space Transports ............. 11
3.1.2.1. Single-Stage-to-Orbit SSTO ................ 11
3.1.2.2. Two-Stage-to-Orbit TSTO ................... 12
3.1.3. Design Procedure ................................... 13
3.1.3.1. Design Tools and Methods .................. 14
3.1.3.2. Baseline Concept .......................... 15
3.1.3.3. Boundary Conditions and Requirements ...... 16
3.1.3.4. Variation of Mission and Staging Mach
Number .................................... 16
3.1.3.5. Trade Studies ............................. 17
3.1.3.6. Evaluation and Comparison of the
Concepts .................................. 17
3.1.4. Variation of Mission and Mach Numbers .............. 18
3.1.4.1. Mission Comparison ........................ 20
3.1.4.2. Comparison of Mach Number Variation ....... 21
3.1.4.3. Accelerator Vehicle Concepts .............. 25
3.1.5. Trade Studies ...................................... 25
3.1.5.1. Airbreathing Second Stage ................. 26
3.1.5.2. LOX-Collection ............................ 29
3.1.6. Comparison and Evaluation .......................... 34
3.1.7. Conclusion and Outlook ............................. 35
3.2. Evaluation and Multidisciplinary Optimization of Two-
Stage-to-Orbit Space Planes with Different Lower-Stage
Concepts .................................................. 38
Thorsten Raible and Dieter Jacob
3.2.1. Introduction ....................................... 38
3.2.2. Reference Configurations ........................... 40
3.2.2.1. Concept Design and Mission Requirements ... 40
3.2.2.2. Space Plane Configuration with Lifting
Body Lower Stage .......................... 40
3.2.2.3. Space Plane Configuration with Waverider
Lower Stage ............................... 42
3.2.2.4. Design and Optimization Parameters ........ 44
3.2.3. Analysis Methods ................................... 44
3.2.3.1. Quality Criteria .......................... 44
3.2.3.2. Simulation and Optimization Software ...... 46
3.2.4. Performance of Reference Space Planes .............. 46
3.2.4.1. Mass Breakdown ............................ 46
3.2.4.2. Design Sensitivities ...................... 48
3.2.5. Optimization Results ............................... 50
3.2.5.1. Nominal Optimizations ..................... 50
3.2.5.2. Sensitivity-Based Optimizations ........... 53
3.2.6. Summary and Conclusions ............................ 54
4. Aerodynamics and Thermodynamics ............................. 57
4.1. Low-Speed Tests with an ELAC-Model
at High Reynolds Numbers .................................. 57
Günther Neuwerth, Udo Peiter, and Dieter Jacob
4.1.1. Introduction ....................................... 58
4.1.2. Wind Tunnel Models ................................. 59
4.1.3. Pressure Distributions Influenced by Reynolds
Number ............................................. 61
4.1.4. Flow Field Influenced by Reynolds Number ........... 67
4.1.5. Force Coefficients Influenced by Reynolds Number ... 71
4.1.6. Conclusion ......................................... 75
4.2. Experimental and Numerical Analysis of Supersonic Flow
over the ELAC-Configuration ............................... 77
Anatoly Michailovich Kharitonov, Mark Davidovich
Brodetsky Andreas Heme, Wolfgang Schröder,
Matthias Heller, Gottfried Sachs, Christian
Breitsamter, and Boris Laschka
4.2.1. Introduction ....................................... 77
4.2.2. Experimental Setup ................................. 78
4.2.3. Numerical Method ................................... 87
4.2.4. Results ............................................ 88
4.2.4.1. Flow Over the Orbital Stage and the
EOS/Flat Plate Configuration .............. 88
4.2.4.2. Separation of ELAC1C and EOS .............. 96
4.2.5. Conclusions ....................................... 100
4.3. Stage Separation - Aerodynamics and Flow Physics ......... 101
Christian Breitsamter, Lei Jiang, and Mochammad
Agoes Moelyadi
4.3.1. Introduction ...................................... 102
4.3.2. Methodology and Vehicle Geometries ................ 102
4.3.3. Numerical Simulation .............................. 105
4.3.3.1. Flow Solver .............................. 105
4.3.3.2. Grid Generation .......................... 106
4.3.4. Experimental Simulation ........................... 107
4.3.4.1. Models and Facility ...................... 107
4.3.4.2. Measurement Technique and Test
Programme ................................ 108
4.3.5. Steady State Flow ................................. 109
4.3.5.1. Dominant Flow Phenomena .................. 109
4.3.5.1.1. Inviscid Case - 2D and 3D
Simulations ................... 109
4.3.5.1.2. Viscous Effects - Laminar
and Turbulent Flow ............ 112
4.3.5.2. Comparison of Experimental and
Numerical Results ........................ 113
4.3.6. Unsteady Aerodynamics ............................. 115
4.3.6.1. Longitudinal Motion - Dynamic
Separation ............................... 115
4.3.6.2. Lateral Motion - Disturbance Effects ..... 117
4.3.7. Detailed Two-Stage-to-Orbit Configuration ......... 119
4.3.8. Conclusions and Outlook ........................... 122
4.4. DNS of Laminar-Turbulent Transition in the Low
Hypersonic Regime ........................................ 124
Axel Fezer, Markus Kloker, Alessandro Pagella,
Ulrich Rist, and Siegfried Wagner
4.4.1. Introduction ...................................... 124
4.4.2. Numerical Approach ................................ 125
4.4.2.1. Governing Equations ...................... 126
4.4.2.2. Spatial and Time Discretization .......... 127
4.4.2.3. Initial and Boundary Conditions .......... 127
4.4.3. Transition on Flat Plate and Sharp Cone ........... 128
4.4.3.1. Application-Specific Details of the
Numerical Method ......................... 128
4.4.3.2. Results: Simulation of a Controlled
Experiment ............................... 130
4.4.3.3. Results: Flat Plate and Cone at
M = 6.8 .................................. 131
4.4.4. Transitional Shock-Wave/Boundary-Layer
Interaction at Ma=4.8 ............................. 135
4.4.4.1. Application-Specific Details of the
Numerical Method ......................... 137
4.4.4.2. Results: Impinging Shock on a Flat
Plate vs. Compression Ramp at Ma = 4.8 ... 139
4.4.4.3. Conclusions .............................. 146
4.5. Numerical Simulation of High-Enthalpy Nonequilibrium
Air Flows ................................................ 148
Farid Infed, Markus Fertig, Ferdinand Olawsky,
Panagiotis Adamidis, Monika Auweter-Kurtz, Michael
Resch, and Ernst W. Messerschmid
4.5.1. Aerothermodynamic Aspects of Re-Entry Flows ....... 148
4.5.1.1. Inviscid Fluxes .......................... 149
4.5.1.2. Thermal Relaxation ....................... 150
4.5.1.3. Electronic Excitation .................... 150
4.5.1.4. Thermochemical Relaxation ................ 151
4.5.1.5. Transport Coefficients ................... 152
4.5.1.6. Turbulence ............................... 152
4.5.1.7. Electrical Discharge ..................... 152
4.5.1.8. Gas-Surface Interaction Modelling ........ 152
4.5.1.9. Radiative Exchange at the Surface ........ 153
4.5.1.10.Heat Conduction within TPS Materials ..... 154
4.5.2. Numerics and Parallelization ...................... 155
4.5.2.1. Conservation Equations ................... 155
4.5.2.2. Solver ................................... 156
4.5.2.3. Multiblock ............................... 157
4.5.2.4. Metacomputing ............................ 158
4.5.2.5. Adaptive Grids ........................... 158
4.5.3. Results ........................................... 159
4.5.3.1. Simulation of the Re-Entry of the X-38 ... 159
4.5.3.2. Simulation of the Plasma Source RD5 ...... 162
4.6. Flow Simulation and Problems in Ground Test
Facilitiesn .............................................. 165
Uwe Gaisbauer, Helmut Knauss, Siegfried Wagner,
Georg Herdrich, Markus Fertig, Michael Winter,
and Monika Auweter-Kurtz
4.6.1. Introduction ...................................... 165
4.6.2. Validation of a Short Duration Supersonic Wind
Tunnel for Natural Laminar Turbulent Transition
Studies ........................................... 170
4.6.2.1. Introduction to the Problem .............. 170
4.6.2.2. The Shock Wind Tunnel at Stuttgart
University ............................... 171
4.6.2.3. Detection Techniques for Flow
Disturbance Fields ....................... 175
4.6.2.4. Free Stream Disturbance Measurements
in the Shock Wind Tunnel ................. 178
4.6.2.5. Transition Experiments in the Test
Section Flow ............................. 184
4.6.2.6. Conclusion and Aspects ................... 189
4.6.3. Plasma Wind Tunnels ............................... 191
4.6.3.1. Plasma Generators ........................ 192
4.6.3.1.1. Arc-Driven Plasma Generators
(TPG and MPG) ................. 192
4.6.3.1.2. Inductively Heated Plasma
Generators (IPGs) ............. 195
4.6.3.2. Heat Flux Simulation for X-38 Using
PWK1 as Example for PWK Investigation .... 197
4.7. Characterization of High-Enthalpy Flows .................. 199
Monika Auweter-Kurtz, Markus Fertig, Georg Herdrich,
Kurt Hirsch, Stefan Lohle, Sergej Pidan, Uwe
Schumacher, and Michael Winter
4.7.1. Intrusive Measurement Methods ..................... 200
4.7.1.1. Material Sample Support System ........... 202
4.7.1.2. Heat Flux Measurements ................... 203
4.7.2. Non-Intrusive Techniques .......................... 206
4.7.2.1. Emission Spectroscopy .................... 207
4.7.2.2. Laser-Induced Fluorescence ............... 209
4.7.2.3. Thomson Scattering for Electron
Temperature and Density Determination .... 211
4.7.2.4. High-Resolution Spectroscopy and Fabry
Perot Interferometry ..................... 212
4.7.3. Flight Instrumentation (PYREX, RESPECT, PHLUX,
COMPARE) .......................................... 213
4.7.3.1. Description of PYREX-KAT38 (Pyrometric
Entry Experiment) ........................ 214
4.7.3.2. RESPECT (Re-Entry SPECTrometer) .......... 216
4.7.3.3. COMPARE .................................. 217
4.8. Numerical Simulation of Flow Fields Past Space
Transportation Systems ................................... 220
Andreas Heme, Wolfgang Schroder, and Matthias Meinke
4.8.1. Introduction ...................................... 221
4.8.2. Numerical Scheme .................................. 221
4.8.2.1. Basic Equations .......................... 221
4.8.2.2. Initial and Boundary Conditions .......... 222
4.8.2.3. Spatial Discretization in Structured
Grids .................................... 223
4.8.2.4. Spatial Discretization in Unstructured
Grids .................................... 224
4.8.2.5. Structured/Unstructured Coupling ......... 225
4.8.2.6. Temporal Integration ..................... 225
4.8.3. Results ........................................... 226
4.8.3.1. Geometry of the Two-Stage System ......... 226
4.8.3.2. Flow Past ELAC ........................... 228
4.8.3.3. Flow Past ELAC-lc ........................ 233
4.8.3.4. Simplified Stage Separation .............. 240
4.8.4. Conclusions ....................................... 241
4.9. High-Speed Aerodynamics of the Two-Stage ELAC/EOS-
Configuration for Ascend and Re-entry .................... 242
Martin Bleilebens, Christoph Glößner, and Herbert
Olivier
4.9.1. Introduction and Experimental Conditions .......... 242
4.9.2. Measurement Equipment ............................. 244
4.9.2.1. Pressure Measurement ..................... 244
4.9.2.2. Temperature and Heatflux Measurement ..... 244
4.9.2.3. Force and Moment Measurement ............. 244
4.9.2.4. Flow Visualization ....................... 245
4.9.3. Measurements on the ELAC- and EOS-
Configurations .................................... 246
4.9.3.1. Pressure and Heat Flux Measurements
on the ELAC-Configuration ................ 246
4.9.3.2. Force and Moment Measurements on the
ELAC-Configuration ....................... 247
4.9.3.3. Pressure and Heat Flux Measurements on
the EOS-Configuration .................... 249
4.9.3.4. Force and Moment Measurements on the
EOS-Configuration ........................ 251
4.9.4. Detailed Measurements on Ramp-Configurations ...... 254
4.9.4.1. Laminar and Turbulent Shock-
Wave/Boundary-Layer Interactions ......... 254
4.9.4.2. Theoretical Considerations ............... 255
4.9.4.3. Ramp Flows with Variation of Surface
Temperature .............................. 256
4.9.4.4. Description of Ramp Model ................ 258
4.9.4.5. Schlieren Pictures and Position of
Separation ............................... 260
4.9.4.6. Determination of Pressure Coefficients ... 262
4.9.4.7. Determination of Stanton Numbers ......... 264
4.9.5. Conclusions ....................................... 267
5. Propulsion ................................................. 269
5.1. PDF/FDF-Methods for the Prediction of Supersonic
Turbulent Combustion ..................................... 269
Stefan Heinz and Rainer Friedrich
5.1.1. Introduction ...................................... 269
5.1.2. Methods for Turbulent Reacting Flow
Calculations ...................................... 270
5.1.2.1. Basic Methods ............................ 271
5.1.2.2. Hybrid PDF/FDF-Methods ................... 272
5.1.3. Some Deficiencies of Existing Hybrid PDF-
Methods ........................................... 272
5.1.3.1. The Transport Problem .................... 273
5.1.3.2. The Mixing Problem ....................... 273
5.1.3.3. The Energy Problem ....................... 274
5.1.4. New Theoretical Concepts .......................... 275
5.1.4.1. The Transport Problem .................... 276
5.1.4.2. The Mixing Problem ....................... 276
5.1.4.3. The Energy Problem ....................... 276
5.1.5. The Use of PDF Combustion Codes ................... 277
5.1.5.1. The Current Use of PDF/FDF-Methods ....... 277
5.1.5.2. New Developments ......................... 279
5.1.5.3. Common Activities to Develop a New
Combustion Code .......................... 279
5.1.6. Prospects for Further Developments ................ 280
5.1.6.1. The Current and Future Use of
Computational Methods .................... 280
5.1.6.2. Some Challenges .......................... 281
5.2. Design and Testing of Gasdynamically Optimized Fuel
Injectors for the Piloting of Supersonic Flames with
Low Losses ............................................... 284
Anatoliy Lyubar, Tobias Sander, and Thomas Sattelmayer
5.2.1. Introduction ...................................... 284
5.2.2. Experimental Setup ................................ 285
5.2.2.1. Model SCRamjet Combustor ................. 285
5.2.2.2. Preheater ................................ 285
5.2.2.3. Combustion Chamber ....................... 286
5.2.2.4. Injectors ................................ 288
5.2.3. Investigation Tools ............................... 289
5.2.3.1. Shadowgraph Method ....................... 289
5.2.3.2. Rayleigh Scattering ...................... 289
5.2.3.3. Raman Scattering ......................... 289
5.2.3.4. OH-LIF Measurements ...................... 290
5.2.3.5. Self-Fluorescence Measurements
(Chemiluminescence) ...................... 290
5.2.4. Numerical Modelling ............................... 291
5.2.4.1. Numerical Simulation with the CFD-Code
Fluent 5.5 ............................... 291
5.2.4.2. Special Features of the Modelling of
the Supersonic Combustion ................ 291
5.2.4.3. Reducing the Number of Species ........... 292
5.2.4.4. Reaction Mapping by Using of the
Polynomials .............................. 294
5.2.4.5. Validation of the Modelling Approach
with Polynomials ......................... 295
5.2.5. Two Stage Injector ................................ 297
5.2.5.1. Theoretical Considerations ............... 297
5.2.5.2. Shock Stabilization ...................... 300
5.2.5.3. Combustion ............................... 303
5.2.6. Conclusions ....................................... 305
5.3. Hypersonic Propulsion Systems: Design, Dual-Mode
Combustion and Systems Off-Design Simulation ............. 308
5.3.1. Combustion Stability of a Dual-Mode Scramjet -
Configuration with Strut Injector ................. 308
Sara Rocci-Denis, Armin Brandstetter, Dieter
Rist, and Hans-Peter Kau
5.3.1.1. Introduction ............................. 308
5.3.1.2. Experimental Setup ....................... 310
5.3.1.3. Results and Discussion ................... 315
5.3.1.4. Conclusions .............................. 324
5.3.2. Hypersonic Highly Integrated Propulsion
Systems - Design and Off-Design Simulation ....... 327
Hans Rick, Andreas Bauer, Thomas Esch,
Sebastian Hollmeier, Hans-Peter Kau, Sven
Kopp, and Andreas Kreiner
5.3.2.1. Introduction ............................. 327
5.3.2.2. Reference Propulsion System for the
TSTO Concept ............................. 330
5.3.2.3. Engine Integration ....................... 330
5.3.2.4. Core Engine .............................. 336
5.3.2.5. Numerical Engine Simulation .............. 337
5.3.2.6. Thrust Vectoring ......................... 338
5.3.2.7. Real Time Flight Simulation .............. 344
5.3.2.8. Conclusion ............................... 345
5.4. Experimental Investigation about External Compression
of Highly Integrated Airbreathing Propulsion Systems ..... 347
Uwe Gaisbauer, Helmut Knauss, and Siegfried Wagner
5.4.1. Introduction ...................................... 347
5.4.1.1. Focus on the Problem ..................... 348
5.4.1.2. Preliminary Measurements ................. 349
5.4.2. Experimental Facility ............................. 350
5.4.3. Wind Tunnel Models and Instrumentation ............ 351
5.4.3.1. Model 1 .................................. 351
5.4.3.2. Model 2 .................................. 352
5.4.3.3. Model 3 .................................. 353
5.4.4. Numerical Model ................................... 354
5.4.5. Measurements and Results .......................... 354
5.4.5.1. Determination of the Boundary-
Conditions ............................... 355
5.4.5.2. Measurements in the Field of Shock
Boundary Layer Interaction ............... 358
5.4.6. Conclusion and Outlook ............................ 362
5.5. Experimental and Numerical Investigation
of Lobed Strut Injectors for Supersonic Combustion ....... 365
Peter Gerlinger, Peter Kasal, Fernando Schneider,
Jens von Wolfersdorf, Bernhard Weigang, and Manfred
Aigner
5.5.1. Introduction ...................................... 365
5.5.2. Experimental Setup and Measurement Techniques ..... 366
5.5.3. Governing Equations and Numerical Simulation ...... 369
5.5.3.1. Multigrid Convergence Acceleration ....... 370
5.5.4. Strut Design and Performance Parameters ........... 371
5.5.5. Supersonic Mixing ................................. 373
5.5.6. Supersonic Combustion ............................. 374
5.5.6.1. Investigation of Different Lobed Strut
Injectors ................................ 375
5.5.7. Conclusions ....................................... 380
5.6. Experimental Studies of Viscous Interaction Effects
in Hypersonic Inlets and Nozzle Flow Fields .............. 383
Andreas Henckels and Patrick Gruhn
5.6.1. Introduction ...................................... 383
5.6.2. Experimental Techniques ........................... 385
5.6.2.1. Facility and Flow Diagnostics ............ 385
5.6.2.2. Wind Tunnel Models ....................... 386
5.6.3. Inlet Studies ..................................... 388
5.6.4. Nozzle Studies .................................... 395
5.6.5. Conclusion ........................................ 400
5.7. Intake Flows in Airbreathing Engines for Supersonic
and Hypersonic Transport ................................. 403
Birgit Ursula Reinartz, Joern van Keuk, Josef
Ballmann, Carsten Herrmann, and Wolfgang Koschel
5.7.1. Introduction ...................................... 404
5.7.2. Physical Model .................................... 405
5.7.3. Numerical Method .................................. 406
5.7.4. Results ........................................... 408
5.7.4.1. Turbulent 2D Supersonic Intake Flows
with Internal Compression ................ 408
5.7.4.2. Laminar 3D Hypersonic Corner Flows ....... 411
5.7.4.3. Turbulent 3D Hypersonic Flows through
Symmetric/Asymmetric Double-Fin
Configurations ........................... 414
5.7.4.4. Laminar 2D Shock Interactions in
Hypersonic Flows with Chemical Non-
Equilibrium .............................. 415
5.7.5. Conclusions ....................................... 418
6. Flight Mechanics and Control ............................... 421
6.1. Safety Improvement for Two-Stage-to-Orbit Vehicles
by Appropriate Mission Abort Strategies .................. 421
Michael Mayrhofer, Otto Wagner, and Gottfried Sachs
6.1.1. Introduction ...................................... 422
6.1.2. Dynamics Model of Two-Stage-to-Orbit Vehicle ...... 423
6.1.3. Optimization Problem .............................. 427
6.1.4. Safety Improved Nominal Trajectory ................ 428
6.1.5. Mission Aborts of Carrier Stage ................... 430
6.1.6. Mission Aborts of Orbital Stage ................... 432
6.1.7. Mission Abort Plan ................................ 435
6.1.8. Conclusions ....................................... 436
6.2. Optimal Trajectories for Hypersonic Vehicles with
Predefined Levels of Inherent Safety ..................... 438
Rainer Callies
6.2.1. Introduction ...................................... 439
6.2.2. Theoretical Background ............................ 440
6.2.2.1. Classical Problem ........................ 440
6.2.2.2. Related Boundary Value Problem ........... 440
6.2.2.3. Extended Problem (A) ..................... 441
6.2.2.4. Extended Problem (B) ..................... 444
6.2.3. Numerical Method .................................. 446
6.2.4. Model System ...................................... 449
6.2.4.1. Overview ................................. 449
6.2.4.2. Thrust Model ............................. 449
6.2.4.3. Atmospheric and Aerodynamic Model ........ 450
6.2.4.4. Equations of Motion ...................... 451
6.2.4.5. Primary Problem .......................... 452
6.2.4.6. Secondary Problem ........................ 453
6.2.4.7. Extended Problem (B) ..................... 454
6.2.4.8. Numerical Results ........................ 455
6.2.5. Conclusion ........................................ 456
6.3. Hypersonic Trajectory Optimization for Thermal Load
Reduction ................................................ 458
Michael Dinkelmann, Markus Wächter, and Gottfried
Sachs
6.3.1. Introduction ...................................... 459
6.3.2. Modelling of Vehicle Dynamics ..................... 460
6.3.3. Modelling of Heat Input ........................... 464
6.3.4. Optimization Problem .............................. 467
6.3.5. Results ........................................... 469
6.3.5.1. Range Cruise ............................. 469
6.3.5.2. Return-to-Base Cruise .................... 471
6.3.6. Conclusions ....................................... 473
6.4. Flight Dynamics and Control Problems of Two-Stage-to-
Orbit Vehicles ........................................... 476
6.4.1. Flight Tests and Simulation Experiments for
Hypersonic Long-Term Dynamics Flying QuaUties ..... 476
Robert Stich, Timothy H. Cox, and Gottfried
Sachs
6.4.1.1. Introduction ............................. 477
6.4.1.2. Hypersonic Flight Dynamics ............... 478
6.4.1.3. Research Aircraft and Flight Simulator ... 480
6.4.1.4. Results .................................. 482
6.4.1.5. Conclusions .............................. 487
6.4.2. Wind Tunnel Tests for Modelling the Separation
Dynamics of a Two-Stage-to-Orbit Vehicle .......... 489
Christian Zahringer and Gottfried Sachs
6.4.2.1. Introduction ............................. 489
6.4.2.2. Test Facility and Wind Tunnel Models ..... 490
6.4.2.3. Results .................................. 492
6.4.2.4. Conclusions .............................. 497
7. High-Temperature Materials and Hot Structures .............. 499
7.1. Ceramic Matrix Composites - the Key Materials for
Re-Entry from Space to Earth ............................. 499
Martin Frieß, Walter Krenkel, Richard
Kochendörfer, Rüdiger Brandt, Günther Neuer,
and Hans-Peter Maier
7.1.1. Introduction and Overview ......................... 499
7.1.2. Liquid Silicon Infiltration: Process
Development ....................................... 500
7.1.3. Microstructural Design of C/C-SiC Composites ...... 502
7.1.3.1. C/C-SiC Composites Derived from As-
Received Carbon Fibres ................... 502
7.1.3.2. C/C-SiC Composites Derived from
Thermally Pre-Treated Carbon Fibres ...... 503
7.1.3.3. Graded C/C-SiC Composites ................ 504
7.1.3.4. C/C-SiC Composites Derived from
Graphitized C/C .......................... 508
7.1.4. Macroscopic Design Aspects ........................ 509
7.1.4.1. Dimensional Stability .................... 509
7.1.4.2. Modular Construction by In-Situ
Joining .................................. 511
7.1.5. Thermophysical Characterization of C/C-SiC ........ 512
7.1.5.1. Methods to Measure Thermophysical
Properties ............................... 512
7.1.5.2. Materials and Specimen Preparation ....... 512
7.1.5.3. Specific Heat Capacity ................... 514
7.1.5.4. Thermal Conductivity ..................... 515
7.1.5.5. Spectral and Total Emissivity ............ 518
7.1.6. Thermomechanical Characterization of C/C-SiC ...... 520
7.1.6.1. Failure Mechanism of C/C-SiC Materials ... 520
7.1.6.2. Influence of the Temperature on the
Stress-Strain Behaviour .................. 520
7.2. Behaviour of Reusable Heat Shield Materials under
Re-Entry Conditions ...................................... 527
Fritz Aldinger, Monika Auweter-Kurtz, Markus Fertig,
Georg Herdrich, Kurt Hirsch, Peter Lindner, Dirk
Matusch, Gunther Neuer, Uwe Schumacher, and Michael
Winter
7.2.1. Principles and Modelling of Heterogeneous
Reactions ......................................... 528
7.2.1.1. Heterogeneous Catalysis .................. 528
7.2.1.2. Redox Reactions Including Active and
Passive Oxidation ........................ 531
7.2.1.3. Surface Reaction Model Applied to
MIRKA Re-Entry Flow ...................... 533
7.2.2. Characterization of High-Temperature Oxidation
and Catalytic Behaviour of TPS Materials .......... 535
7.2.2.1. Experimentally Observed Influence of
Catalytic Efficiency ..................... 535
7.2.2.2. Oxidation Behaviour ...................... 537
7.2.3. Developments and Investigations of Protection
Layers for Reusable Heat Shield Materials ......... 541
7.2.3.1. Production and Characteristics of
Protection Layers ........................ 541
7.2.3.2. Diagnostics for the Tests of the
Protection Layers in the Plasma Wind
Tunnel ................................... 542
7.2.3.3. Protection Material Tests and Results .... 543
7.3. Design and Evaluation of Fibre Ceramic Structures ........ 549
Bernd-Helmut Kroplm, Richard Kochendorfer, Thomas
Reimer, Thomas UUmann, Ralf Kornmann, Roger Schafer,
and Thomas Wallmersperger
7.3.1. Introduction ...................................... 549
7.3.1.1. Concept Design and Manufacturing
Studies .................................. 551
7.3.1.2. Manufacturing ............................ 553
7.3.1.3. Test ..................................... 554
7.3.1.4. Plasma Sprayed Yttrium Silicates for
Oxidation Protection of C/C-SiC Panels ... 555
7.3.1.5. Flight Experiment ........................ 557
7.3.2. Measuring Model Deflections by Thermo-
Mechanical Loads in a Plasma Wind Tunnel .......... 559
7.3.2.1. Overview ................................. 559
7.3.2.2. Model Design ............................. 561
7.3.2.3. Adaptation of the HTGM to the L3K
Facility ................................. 562
7.3.2.4. Results .................................. 565
7.3.3. Material Description of Fibre Ceramics ............ 569
7.3.3.1. Phenomena in C/C-SiC Materials ........... 569
7.3.3.2. Phenomenological Model ................... 571
7.3.3.3. Micromechanically Based
Phenomenological Model ................... 573
7.3.3.4. Functionally Graded Materials ............ 575
7.3.4. Conclusions ....................................... 578
8. Cooperation with Industry and Research Establishments,
Participation in National and International Research
Programmes ................................................. 581
Dieter Jacob, Gottfried Sachs, and Siegfried Wagner
9. Conclusions and Perspectives ............................... 585
Dieter Jacob, Gottfried Sachs, and Siegfried Wagner
10.Appendix ................................................... 587
10.1.Publications .......................................... 587
10.2.Dissertations ......................................... 639
10.3.Habilitations ......................................... 648
10.4.Patents ............................................... 649
10.5.Number of Diploma Theses .............................. 649
10.6.Visiting Researchers .................................. 649
10.7.Organization and Projects ............................. 656
|