Chapter 1 Introduction to the Processing of Petroleum
Macromolecules ........................................ 1
1.1. Importance and Challenges of Petroleum ..................... 1
1.2. World Petroleum Economics .................................. 3
1.2.1. OPEC ................................................ 3
1.2.2. China and India ..................................... 4
1.2.3. United States and Canada ............................ 5
1.2.4. When Will Petroleum Run Out? ........................ 6
1.2.5. Refinery Capacity ................................... 8
1.2.6. Effect of Threat of Global Warming .................. 9
1.3. Origin of Petroleum ....................................... 11
1.4. Production and Transport of Petroleum ..................... 13
1.5. Refinery Processing ....................................... 14
1.5.1. Crude Processing Unit .............................. 15
1.5.2. Vacuum Distillation ................................ 16
1.5.3. Fluid Catalytic Cracking ........................... 16
1.5.4. Gas Oil Hydrocracking .............................. 18
1.5.5. Naphtha Reforming .................................. 18
1.5.6. Resid Processing ................................... 19
1.5.6.1. Visbreaking ............................... 19
1.5.6.2. Coking .................................... 19
1.5.6.3. Resid Hydrotreating and Hydroconversion ... 20
1.6. Challenges for Processing Petroleum Macromolecules ........ 20
1.6.1. Aromatic By-Product ................................ 20
1.6.2. Produce Feed for Secondary Upgrading ............... 21
1.6.3. Minimize Hydrocarbon Gas By-Product ................ 22
1.6.4. Mitigate Fouling ................................... 22
1.7. Chemical Engineering Approach ............................. 22
References ................................................ 25
Chapter 2 Characterization of Petroleum Macromolecules ......... 27
2.1. Class Separation .......................................... 27
2.1.1. Volatiles and Coke ................................. 27
2.1.2. Asphaltenes and Resins ............................. 27
2.1.3. Saturates and Aromatics ............................ 29
2.1.4. Reproducibility of Class Separation ................ 29
2.1.5. The Concept of Asphaltenes ......................... 29
2.1.6. Unreacted Resid Fractions .......................... 30
2.1.7. Fractions of Thermally Converted Resid ............. 32
2.1.8. Fractions of the Thermal Conversion of Resid
Fractions .......................................... 33
2.2. Solvent-Resid Phase Diagram ............................... 35
2.2.1. The Concept of a Compositional Map ................. 35
2.2.2. Measurement of Molecular Attraction ................ 35
2.2.3. Measurement of Molecular Weight .................... 36
2.2.4. Recommended Compositional Map ...................... 38
2.2.5. Transformations between Classes .................... 39
2.2.6. Conclusions and Implications ....................... 40
2.3. High Performance Liquid Chromatography .................... 41
2.3.1. HPLC Instrument .................................... 41
2.3.2. Separation ......................................... 41
2.3.3. Aromaticity Measurement Using the Diode Array
Detector ........................................... 42
2.3.4. Mass Measurement Using the Evaporative Mass
Detector ........................................... 43
2.3.5. HPLC Analysis ...................................... 43
2.3.6. Example Applications of Analytical HPLC ............ 45
2.3.6.1. Estimate of Average Carbon Number
and Molecular Weight ...................... 45
2.3.6.2. Distillation of Heavy Vacuum Gas Oil ...... 48
2.3.6.3. Hydrotreating ............................. 48
2.3.6.4. Fluid Catalytic Cracking .................. 50
2.3.7. Preparative HPLC of Heavy Coker Liquids ............ 50
2.3.7.1. Heavy Coker Gas Oil ....................... 50
2.3.7.2. Once-Through Coker Scrubber Bottoms ....... 54
2.4. Short-Path Distillation (Distact Distillation) ............ 59
2.5. Combining Short-Path Distillation and Preparative HPLC .... 62
2.6. Other Methods to Characterize Petroleum Macromolecules .... 62
2.6.1. Metals ............................................. 63
2.6.2. Naphthenic Acids ................................... 64
2.6.3. Petroleomics ....................................... 64
2.7. Physical Structure ........................................ 68
2.7.1. Scattering Data .................................... 68
2.7.2. Effect of Temperature .............................. 70
2.7.3. Model of Sirota .................................... 70
References ................................................ 71
Chapter 3 Pendant-Core Building Block Model of Petroleum
Resids ............................................... 75
3.1. Approach to Develop Approximations ........................ 75
3.2. The Simplest Approximation to the Distribution of
Petroleum Macromolecules .................................. 76
3.3. Model for Conradson Carbon Residue (CCR) .................. 77
3.4. Conradson Carbon Residue of Low-Molecular-Weight
Fractions ................................................. 82
3.5. Elemental Analysis of Conradson Carbon Residue ............ 83
3.6. Elemental Analysis of Distillable Liquid Products ......... 85
3.7. Variation of Conradson Carbon Residue with Processing ..... 87
3.8. Conradson Carbon Residue Distribution ..................... 90
3.9. Pendant-Core Model Compounds: Discotic Liquid Crystals .... 91
3.10.Limitations and Future Developments ....................... 94
3.10.1. Successes ......................................... 94
3.10.2. Limitations ....................................... 94
3.10.3. Innovations ....................................... 94
References ................................................ 95
Chapter 4 Thermal Conversion Kinetics .......................... 97
4.1. Introduction .............................................. 97
4.1.1. Potential Applications ............................. 97
4.1.2. Wish List for a Kinetic Model ...................... 97
4.1.3. Need for Resid Thermal Conversion Research ......... 98
4.2. Pseudocomponent Model with Stoichiometric Coefficients .... 99
4.3. Phase-Separation Mechanism for Coke Formation ............ 101
4.3.1. Background ........................................ 101
4.3.2. Experimental Procedure ............................ 102
4.3.3. Experimental Results .............................. 103
4.3.3.1. Coke Induction Period .................... 103
4.3.3.2. Asphaltene Maximum ....................... 103
4.3.3.3. Decrease of Asphaltenes Parallels
Decrease of Heptane Solubles ............. 105
4.3.3.4. High Reactivity of Unconverted
Asphaltenes .............................. 105
4.3.4. Phase-Separation Kinetic Model .................... 107
4.3.5. Derivation of Equations for the Phase-Separation
Kinetic Model ..................................... 109
4.3.6. Comparison of Kinetic Model with Quantity Data .... 110
4.3.7. Comparison of the Kinetic Model with Quality
Data .............................................. 111
4.3.7.1. Asphaltene Hydrogen Content and
Molecular Weight ......................... 111
4.3.7.2. Asphaltene Association Factor ............ 115
4.3.7.3. Coke Molecular Weight .................... 116
4.3.7.4. Carbonaceous Mesophase ................... 116
4.3.8. Summary of Phase-Separation Kinetic Model
and Mechanism ..................................... 119
4.4. Series Reaction Kinetic Model ....................... 120
4.4.1. Some New Resid Thermal Conversion Data ............ 120
4.4.1.1. Cold Lake Vacuum Resid with 50%
Initial Asphaltenes ...................... 120
4.4.1.2. Longer Reaction Times at 400°С ........... 121
4.4.2. Derivation of the Series Reaction Model ........... 121
4.4.3. Comparison of the Series Reaction Model with
400°С Data ........................................ 125
4.4.4. Linear Relationships between the Fractions ........ 126
4.4.5. Comparison of the Series Reaction Kinetic Model
with Data at 370°С and 420°С ...................... 131
4.4.6. Linear Relationships between Fractions at
Different Temperatures ............................ 132
4.4.7. Open Reactor Data on Arabian Heavy Vacuum Resid ... 134
4.4.8. Closed Reactor Data ............................... 140
4.4.8.1. Thermolysis of Cold Lake Vacuum Resid
at400°С .................................. 141
4.4.8.2. Closed Reactor Solubility Relationship ... 141
4.4.8.3. Thermolysis of Arabian Heavy Vacuum
Resid at 400°С ........................... 143
4.4.8.4. Thermolysis of Hondo Vacuum Resid at
400°С .................................... 144
4.4.8.5. Thermolysis of Refinery Blend
Atmospheric Resid in a Closed Reactor .... 145
4.4.9. Hydrogen Balance Constraints on Stoichiometric
Coefficients ...................................... 147
4.4.9.1. Evaluation of Parameters ................. 149
4.4.9.2. Comparison of Model with Experimental
Data ..................................... 151
4.4.10.Simplified Kinetic Model .......................... 156
4.4.11.Thermolysis of Cold Lake Vacuum Resid at 475°С .... 158
4.5. TGA Kinetics of Resids ................................... 161
4.6. Comparison with Wish List ................................ 163
4.6.1. Quantitatively Describes Kinetic Data ............. 163
4.6.2. Convenient to Use ................................. 164
4.6.3. Applies to Wide Variety of Feeds .................. 164
4.6.4. Predicts the Effect of Changing Initial
Concentrations .................................... 164
4.6.5. Model Has a Minimum Number of Adjustable
Parameters and/or Evaluates Parameters from
Characterization Data ............................. 164
4.6.6. Predicts the Effect of Changing Reactor Type ...... 165
4.6.7. Provides Insight for New Innovations .............. 165
4.6.8. Predicts Properties of Products ................... 165
4.7. Natural Hydrogen Donors .................................. 166
4.7.1. Measurement of Donor Hydrogen Concentration ....... 166
4.7.2. Measurement of Hydrogen Donor Relative
Reactivity ........................................ 168
4.7.3. Effect of Thermolysis on Donor Hydrogen of
Resids ............................................ 170
4.7.4. Effect of Very Reactive Hydrogen Donors on
Resid Thermolysis ................................. 172
4.7.5. Implications of Donor Hydrogen in the
Conversion of Resids .............................. 175
4.8. Accomplishments, Limitations, and Future Developments .... 176
4.8.1. Accomplishments ................................... 176
4.8.2. Limitations and Future Developments ............... 177
References ............................................... 177
Chapter 5 Phase Behavior ...................................... 181
5.1. Introduction ............................................. 181
5.1.1. Target and Approach ............................... 181
5.1.2. Causes of Insolubility ............................ 182
5.1.2.1. Hydrogen Bonding or Other Electron
Donor-Acceptor Interaction ............... 182
5.1.2.2. High Molecular Weight .................... 183
5.1.2.3. Difference in Dispersion Interactions
between Like and Unlike Molecules ........ 183
5.1.2.4. The Solute below Its Crystalline
Melting Point ............................ 183
5.1.2.5. A Component of the Mixture Near or
Above Its Critical Point ................. 184
5.1.2.6. Polarity ................................. 184
5.2. Two-Dimensional Solubility Parameters .................... 184
5.2.1. Previous Solvent Selection Methods ................ 184
5.2.2. Development of the Two-Dimensional Solubility
Parameter ......................................... 186
5.2.2.1. Relative Importance of Polar
Interactions ............................. 186
5.2.2.2. Solubility Parameter Components .......... 187
5.2.2.3. Basic Postulates ......................... 188
5.2.2.4. Experiments .............................. 189
5.2.2.5. Evaluation of Solubility Parameter
Components ............................... 190
5.2.2.6. Evaluation of Polygon Solubility Areas ... 192
5.2.2.7. Mixtures of Solvents and Nonsolvents ..... 193
5.2.2.8. Solvents from Mixtures of Nonsolvents .... 194
5.2.2.9. Degree of Success ........................ 195
5.2.3. Application to Petroleum Macromolecules ........... 196
5.2.3.1. Fractions of Cold Lake Vacuum Resid ...... 196
5.2.3.2. Coal-Derived Liquids ..................... 201
5.2.3.3. Discussion of Results and Conclusions .... 204
5.3. The Oil Compatibility Model .............................. 205
5.3.1. Physical Model of Petroleum ....................... 206
5.3.2. Flocculation and Oil Solubility Parameter ......... 207
5.3.2.1. Basic Hypothesis ......................... 208
5.3.2.2. Insolubility Number and Solubility
Blending Number .......................... 208
5.3.3. Mixtures of Oil and Test Liquid ................... 210
5.3.4. Mixtures of Oils .................................. 211
5.3.5. Blending of Souedie and Forties Crudes ............ 212
5.3.6. Refinery Processing of Souedie and Forties
Crude Blends ...................................... 214
5.3.7. TheP-Test ......................................... 214
5.3.7.1. Derivation of the P-Test ................. 215
5.3.7.2. Comparison of the P-Test and the Oil
Compatibility Model for Single Oils ...... 216
5.3.7.3. Comparison of the P-Test and the Oil
Compatibility Model for Oil Mixtures ..... 217
5.3.8. Solubility Parameter Model of Mertens Used
by Andersen ....................................... 218
5.3.9. Incompatible Pairs of Crude Oils .................. 219
5.3.10.Self-Incompatible Oils ............................ 220
5.3.11.Nearly Incompatible Oils .......................... 222
5.3.11.1.Distance from Incompatibility ............ 222
5.3.11.2.Fouling by Oil Blends .................... 222
5.3.12.Application to Refinery Process Oils .............. 224
5.3.12.1.Hydrotreater Plugging Problem ............ 225
5.3.12.2.Compatibility Testing .................... 226
5.3.12.3.Compatibility Numbers for Components
with Asphaltenes ......................... 227
5.3.12.4.Nonsolvent Oil Dilution Test ............. 228
5.3.12.5.Solvent Oil Equivalence Test ............. 229
5.3.12.6.Chlorobenzene Equivalence Test ........... 229
5.3.12.7.Overall Range of Compatibility Numbers ... 230
5.3.12.8.Root Cause Analysis ...................... 231
5.3.12.9.Mitigating Action ........................ 232
5.3.13.Change of Compatibility Numbers with Thermal
Conversion ........................................ 232
5.3.13.1.WRI Coking Indexes to Predict Coke
Induction Period ......................... 232
5.3.13.2.Oil Compatibility Model for Predicting
Induction Period ......................... 233
5.3.14.Status of the Application of the Oil
Compatibility Model to Crude Oils ................. 234
5.3.15.Oil Compatibility Test Procedures ................. 235
5.3.15.1.Check Oil ................................ 235
5.3.15.2.Check for Asphaltenes .................... 236
5.3.15.3.Heptane Dilution Test .................... 237
5.3.15.4.Toluene Equivalence Test ................. 237
5.3.15.5.Solvent Oil Equivalence Test ............. 238
5.3.15.6.Nonsolvent Oil Equivalence ............... 238
5.3.16.Effect of Changing the Normal Paraffin ............ 239
5.3.16.1.OCM Approximate Method for Normal
Paraffin Nonsolvents ..................... 241
5.3.16.2.Mixing Molecules of Different Sizes ...... 242
5.3.16.3.The Regular Flory-Huggins Model .......... 245
5.3.16.4.Hirschberg Approximations ................ 248
5.3.16.5.Cimino Approximations .................... 249
5.3.16.6.Wang and Buckley Approximations .......... 250
5.3.16.7.Yarranton et al. Approximations .......... 250
5.3.16.8.Comparison of Yarranton RF-H and OCM
Approximate Method with Flocculation
Data ..................................... 252
5.3.16.9.Conclusions and Discussion of Results .... 254
5.4. Effect of Pressure on Asphaltene Solubility for Live
Oils ..................................................... 256
5.5. Future Needs for Asphaltene Phase Behavior ............... 257
5.5.1. Asphaltene Association ............................ 257
5.5.2. Role of Resins in Asphaltene Solubility ........... 258
References ............................................... 262
Chapter 6 Fouling Mitigation .................................. 267
6.1. Introduction ............................................. 267
6.1.1. Definition of Fouling ............................. 268
6.1.2. Incentives ........................................ 268
6.2. Fouling Mitigation Strategy .............................. 269
6.2.1. Most Common Causes ................................ 269
6.2.2. Diagnosis ......................................... 270
6.2.2.1. Process Conditions/History ............... 270
6.2.2.2. Analysis of the Foulant .................. 270
6.2.2.3. Analysis of the Oil ...................... 272
6.2.3. Investigation ..................................... 272
6.2.4. Innovation ........................................ 273
6.2.5. Mitigation ........................................ 273
6.3. Case of Fouling Caused by Polymerization of Conjugated
Olefins .................................................. 274
6.3.1. Analysis of Popcorn Coke .......................... 274
6.3.2. Polymerization Hypothesis ......................... 275
6.3.3. Measurement of Conjugated Olefin Concentration .... 275
6.3.4. Possible Mitigation Actions ....................... 276
6.3.5. Flexicoker Fractionator Fouling ................... 277
6.4. Case of Heat Exchanger Fouling after Resid
Hydrotreater ............................................. 279
6.4.1. Microscopic Examination of Feeds and Products ..... 279
6.4.2. Precursor Analyses ................................ 279
6.4.3. Cause of Asphaltene Insolubility .................. 281
6.4.4. Case Study Conclusion ............................. 282
6.5. Asphaltene Dispersants ................................... 282
6.5.1. Measurement of Dispersant Effectiveness ........... 283
6.5.2. Dispersant Head Group ............................. 283
6.5.3. Linear versus Branched Alkyl Chains ............... 284
6.5.4. Synthesis of Alkyl Aromatic Sulfonic Acids ........ 285
6.5.4.1. Number of Aromatic Rings ................. 286
6.5.4.2. Alkyl Chain Length ....................... 287
6.5.4.3. Degree of Branching ...................... 287
6.5.4.1. Make Asphaltenes Soluble in Heptane ...... 288
6.5.6. Conclusions on Asphaltene Dispersants ............. 288
6.5.7. Future Needs for Synthetic Dispersants ............ 289
6.6. Other Cases of Insoluble Asphaltenes on Cooling .......... 289
6.6.1. Mechanism and Identification ...................... 289
6.6.2. Mitigating Solutions .............................. 290
6.7. Thermal Coke Formation ................................... 292
6.7.1. Definition, Mechanism, and Identification ......... 292
6.7.2. Mitigating Solutions .............................. 294
6.8. Oil Incompatibility ...................................... 296
6.8.1. Mechanism and Identification ...................... 296
6.8.2. Mitigating Solutions .............................. 297
6.9. Engineering Methods for Fouling Mitigation ............... 298
6.10.Limitations and Future Developments ...................... 298
References ............................................... 299
Chapter 7 Separation of Petroleum ............................ 301
7.1. Desalting ................................................ 301
7.1.1. Rag Layer Caused by Incompatible or Nearly
Incompatible Oils ................................. 303
7.1.2. Rag Layer Caused by Inorganic Particles ........... 303
7.1.3. Rag Layer Caused by Naphthenic Acids and
Naphthenic Acid Salts ............................. 304
7.2. Maximum Potential Yield by Separation .................... 304
7.2.1. Primary and Secondary Upgrading ................... 304
7.2.2. Experimental ...................................... 305
7.2.3. Separation of Unconverted Heavy Oils .............. 306
7.2.4. Conradson Carbon Separability Limit ............... 307
7.2.5. Separation of Thermally Converted Heavy Oils ...... 310
7.2.6. Separation of Vanadium and Nickel from Heavy
Oils .............................................. 312
7.2.7. Do Even Better: Thermal Conversion with Recycle ... 316
7.2.8. Conclusions on Maximum Potential Yield by
Separation ........................................ 318
7.3. Laboratory Solvent Deasphalting with a Wider Range of
Liquids .................................................. 319
7.3.1. Experimental ...................................... 319
7.3.2. Results for Separation of Conradson Carbon
Residue ........................................... 320
7.3.3. Effect of Temperature ............................. 323
7.3.4. Results for Separation of Metals .................. 323
7.3.5. Results on Athabasca Bitumen ...................... 326
7.4. Solvent Deasphalting as a Process ........................ 329
7.4.1. Objectives ........................................ 329
7.4.2. Commercial Processes .............................. 329
7.4.3. Pilot Plant Solvent Deasphalting Results .......... 331
References ............................................... 335
Chapter 8 Coking .............................................. 337
8.1. Process Objectives ....................................... 337
8.1.1. Catalyst Poison Rejection Process ................. 338
8.1.2. Metallurgical Quality Coke ........................ 339
8.2. Commercial Cokers ........................................ 339
8.2.1. Delayed Cokers .................................... 339
8.2.2. Fluid Coking and Flexicoking ...................... 342
8.3. Other Coking/Pyrolysis Technologies ...................... 345
8.3.1. ART Process ....................................... 345
8.3.2. 3D Process ........................................ 346
8.3.3. FTC Process ....................................... 346
8.3.4. Eureka Process .................................... 347
8.3.5. LR-Flash Coker .................................... 349
8.4. The Innovation Procedure Applied to Coking ............... 350
8.4.1. Maximum Potential ................................. 350
8.4.2. Reasons for Not Obtaining Maximum Potential ....... 351
8.4.3. Ways to Eliminate/Reduce Barriers and
Demonstrate on Small Lab Scale .................... 354
8.4.3.1. Reduce Secondary Cracking ................ 354
8.4.3.2. Coking-Separation Synergy ................ 356
8.4.3.3. Coking on Different Porous Solids ........ 359
8.4.4. Demonstrate on Pilot Plant Scale .................. 363
8.4.5. Consider Alternatives ............................. 365
8.5. Conclusions and Future Developments ...................... 366
References ............................................... 367
Chapter 9 Visbreaking ......................................... 369
9.1. Technology ............................................... 369
9.2. Process Chemistry of Visbreaking ......................... 371
9.3. Limitations to Visbreaker Conversion ..................... 371
9.4. Visbreaking Process Innovations .......................... 372
9.4.1. Optimizing Visbreaker Conversion for Each Feed .... 372
9.4.2. Remove Volatile Nonsolvent ........................ 373
9.4.3. Add Hydrogen Donor Solvent ........................ 373
9.4.4. Prevent Adhesion of Coke to the Visbreaker
Surface ........................................... 374
9.4.5. Couple with Fuels Deasphalting .................... 375
References ............................................... 375
Chapter 10 Hydroconversion .................................... 377
10.1.Process Objectives ....................................... 377
10.2.Fixed-Bed Resid Hydroprocessing .......................... 377
10.3.Ebullating Bed Hydroconversion ........................... 378
10.3.1.Limitations to Conversion ......................... 380
10.3.2.Process Innovations ............................... 380
10.4.Dispersed Catalyst Hydroconversion Processes ............. 381
10.4.1.Limitations to Conversion ......................... 382
10.4.2.Process Innovations ............................... 384
References ............................................... 385
Chapter 11 Future Processing of Petroleum Macromolecules ...... 387
11.1.Pros and Cons of Petroleum Process Improvements .......... 387
11.2.Gasification to Be Emphasized ............................ 388
11.3.Deasphalting of Fuels to Become Common ................... 389
11.4.Yields from Coking Processes to Increase ................. 389
11.5.Dispersed Catalyst to Overtake Ebullating Bed
Hydroconversion .......................................... 390
11.6.Fouling to Be Nearly Eliminated .......................... 391
11.7.Influence of Other Changing Technologies ................. 391
11.7.1.Hydrogen and Fuel Cells ........................... 392
11.7.2.Biofuels .......................................... 392
11.7.3.Gas Conversion Liquids ............................ 392
References ............................................... 392
Index ......................................................... 395
|