Horadam K. Hadamard matrices and their applications (Princeton; Oxford, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHoradam K. Hadamard matrices and their applications. - Princeton; Oxford: Princeton University Press, 2007. - 263 p. - ISBN 0-691-11921-X
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

Chapter 1. Introduction ......................................... 1


PART 1. HADAMARD MATRICES, THEIR APPLICATIONS AND
        GENERALISATIONS ......................................... 7


Chapter 2. Hadamard Matrices .................................... 9

2.1. Classical Constructions ................................... 10
     2.1.1. Sylvester Hadamard matrices ........................ 11
     2.1.2. Paley Hadamard matrices ............................ 11
     2.1.3. Hadamard designs ................................... 12
     2.1.4. Williamson Hadamard matrices ....................... 15
2.2. Equivalence Classes ....................................... 16
2.3. The First Link: Group Developed Constructions ............. 20
     2.3.1. Menon Hadamard matrices ............................ 21
     2.3.2. Ito Hadamard matrices .............................. 23
2.4. Towards the Hadamard Conjecture ........................... 25

Chapter 3. Applications in Signal Processing, Coding and
           Cryptography ........................................ 27

3.1. Spectroscopy: Walsh-Hadamard Transforms ................... 28
     3.1.1. Signal analysis and synthesis ...................... 28
     3.1.2. The Walsh-Hadamard Transform ....................... 29
     3.1.3. The Fast Hadamard Transform ........................ 33
     3.1.4. Hadamard spectroscopy .............................. 33
3.2. Error Correction: Hadamard Codes .......................... 35
     3.2.1. Error-correcting codes ............................. 36
     3.2.2. Hadamard codes ..................................... 39
3.3. Signal Modulation and Separation: Hadamard Codes .......... 43
     3.3.1. CDMA for mobile, wireless and optical
            communications ..................................... 45
     3.3.2. 3-D holographic memory for data storage and
            retrieval .......................................... 47
3.4. Signal Correlation: Perfect Sequences and Arrays .......... 48
     3.4.1. Timing and synchronisation: Perfect binary
            sequences .......................................... 49
     3.4.2. Signal array correlation: Perfect binary arrays .... 50
3.5. Cryptography: Nonlinear Functions ......................... 53
     3.5.1. Binary bent functions and maximally nonlinear
            functions .......................................... 55
     3.5.2. Perfect and almost perfect nonlinear functions ..... 59

Chapter 4. Generalised Hadamard Matrices ....................... 62

4.1. Butson Matrices ........................................... 63
4.2. Complex Hadamard Matrices ................................. 66
     4.2.1. Quaternary complex Hadamard matrices ............... 67
     4.2.2. Unimodular complex Hadamard matrices ............... 69
4.3. Generalised Hadamard Matrices ............................. 70
     4.3.1. Generalised Hadamard matrix constructions .......... 71
     4.3.2. Generalised Hadamard matrices and Butson
            matrices ........................................... 73
     4.3.3. Generalised Hadamard matrices and class regular
            divisible designs .................................. 74
     4.3.4. Group developed GH(w, v/w) and semiregular
            relative difference sets ........................... 75
4.4. Applications of Complex and Generalised Hadamard
     Matrices .................................................. 78
     4.4.1. Quaternary complex Hadamard transforms ............. 78
     4.4.2. Perfect quaternary sequences and arrays ............ 79
     4.4.3. Quaternary error-correcting codes .................. 81
     4.4.4. Generalised Hadamard matrices and Hadamard codes ... 83
4.5. Unification: Generalised Butson Hadamard Matrices and
     Transforms ................................................ 84
     4.5.1. The jacket matrix construction ..................... 85
     4.5.2. The Generalised Hadamard Transform ................. 90

Chapter 5. Higher Dimensional Hadamard Matrices ................ 92

5.1. Classical Constructions ................................... 94
     5.1.1. Boolean function construction for order 2 .......... 95
     5.1.2. Product construction ............................... 97
     5.1.3. Group developed construction ....................... 97
     5.1.4. Perfect binary array construction .................. 98
5.2. Equivalence Classes ....................................... 99
5.3. Applications in Spectroscopy, Coding and Cryptography .... 100
     5.3.1. Multidimensional Walsh Hadamard transforms ........ 101
     5.3.2. Error-correcting array codes ...................... 102
     5.3.3. Cryptography: bent functions and the strict
            avalanche criterion ............................... 105
5.4. The Second Link: Cocyclic Construction ................... 106


PART 2. COCYCLIC HADAMARD MATRICES ............................ 111


Chapter 6. Cocycles and Cocyclic Hadamard Matrices ............ 113

6.1. Cocycles and Group Cohomology ............................ 114
6.2. Cocycles are Everywhere .................................. 116
     6.2.1. Examples of cocycles .............................. 116
     6.2.2. New from old ...................................... 117
     6.2.3. Characteristic properties ......................... 119
     6.2.4. Orthogonality and its inheritance ................. 121
6.3. Computation of Cocycles .................................. 122
     6.3.1. Algorithm 1 — abelian groups ...................... 124
     6.3.2. Algorithm 2 — MAGMA implementation ................ 126
     6.3.3. Algorithm 3 — Homological perturbation ............ 127
6.4. Cocyclic Hadamard Matrices ............................... 128
     6.4.1 Sylvester Hadamard matrices ........................ 128
     6.4.2. Menon Hadamard matrices ........................... 129
     6.4.3. Williamson Hadamard matrices ...................... 129
     6.4.4. Ito Hadamard matrices ............................. 129
     6.4.5. Generalisations of Ito Hadamard matrices .......... 130
     6.4.6. Numerical results ................................. 131
6.5. The Cocyclic Hadamard Conjecture ......................... 133
     6.5.1. Noncocyclic Hadamard matrix constructions? ........ 134
     6.5.2. Status report — research problems in cocyclic
            Hadamard matrices ................................. 137

Chapter 7. The Five-fold Constellation ........................ 139

7.1. Factor Pairs and Extensions .............................. 139
7.2. Orthogonality for Factor Pairs ........................... 143
7.3. All the Cocyclic Generalised Hadamard Matrices ........... 146
     7.3.1 Cocyclic generalised Hadamard matrix
           constructions ...................................... 149
7.4. The Five-fold Constellation .............................. 151
     7.4.1. Restrictions on existence of cocyclic
            generalised Hadamard matrices ..................... 158
     7.4.2. Two approaches .................................... 160

Chapter 8. Bundles and Shift Action ........................... 162

8.1. Bundles and the Five-fold Constellation .................. 163
     8.1.1. Equivalence of transversals ....................... 163
     8.1.2. Bundles of factor pairs ........................... 165
8.2. Bundles of Functions — The Splitting Case ................ 170
8.3. Bundles of Cocycles — The Central Case ................... 174
     8.3.1. Automorphism action versus shift action ........... 174
     8.3.2. A taxonomy for central semiregular RDS s .......... 176
     8.3.3. Bundles with trivial shift action — the
            multiplicative cocycles ........................... 178
8.4. Shift Action — The Central Case .......................... 181
     8.4.1. Orbit structure for cyclic groups ................. 184
     8.4.2. Relationship between orbit structures in
            distinct cohomology classes ....................... 185
8.5. Shift Orbits — The Central Splitting Case ................ 185
     8.5.1. When С is an elementary abelian p-group ........... 187
     8.5.2. When С is an elementary abelian p-group and G
            is a p-group ...................................... 188

Chapter 9. The Future: Novel Constructions and Applications ... 192

9.1. New Applications of Cocycles ............................. 192
     9.1.1. Computation in Galois rings ....................... 192
     9.1.2. Elliptic curve cryptosystems ...................... 195
     9.1.3. Cocyclic codes .................................... 197
     9.1.4. Cocyclic Butson matrices and codes ................ 202
9.2. New Group Developed Generalised Hadamard Matrices ........ 204
     9.2.1. Group developed GH matrices and PN functions ...... 204
     9.2.2. PN functions and a theory of highly nonlinear
            functions ......................................... 208
9.3. New Cocyclic Generalised Hadamard Matrices ............... 212
     9.3.1. Direct sum constructions .......................... 212
     9.3.2. Multiplicative orthogonal cocycles and
            presemifields ..................................... 216
     9.3.3. Swing action ...................................... 224
9.4. New Hadamard Codes ....................................... 225
     9.4.1. Class A cocyclic Hadamard codes ................... 225
     9.4.2. Class В cocyclic Hadamard codes ................... 227
     9.4.3. Class С cocyclic Hadamard codes ................... 229
9.5. New Highly Nonlinear Functions ........................... 230
     9.5.1. 1-D differential uniformity ....................... 230
     9.5.2. Differential 2-row uniformity and APN functions ... 233
     9.5.3. 2-D total differential uniformity ................. 235

Bibliography .................................................. 238
Index ......................................................... 259


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:58 2019. Размер: 13,725 bytes.
Посещение N 2255 c 21.07.2009