Part I Basic Principles and Fundamental Properties
1. Size Effects on Structure and Morphology of Free
or Supported Nanoparticles
C. Henry .................................................. 3
1.1. Size and Confinement Effects ............................... 3
1.1.1. Introduction ........................................ 3
1.1.2. Fraction of Surface Atoms ........................... 3
1.1.3. Specific Surface Energy and Surface Stress .......... 4
1.1.4. Effect on the Lattice Parameter ..................... 5
1.1.5. Effect on the Phonon Density of States .............. 8
1.2. Nanoparticle Morphology .................................... 8
1.2.1. Equilibrium Shape of a Macroscopic Crystal .......... 8
1.2.2. Equilibrium Shape of Nanometric Crystals ........... 10
1.2.3. Morphology of Supported Particles .................. 17
References ................................................ 32
2. Structure and Phase Transitions in Nanocrystals
J.-C. Niepce, L. Pizzagalli .............................. 35
2.1. Introduction .............................................. 35
2.2. Crystalline Phase Transitions in Nanocrystals ........ 39
2.2.1. Phase Transitions and Grain Size Dependence ... 39
2.2.2. Elementary Thermodynamics of the Grain Size
Dependence of Phase Transitions ............... 40
2.2.3. Influence of the Surface or Interface on
Nanocrystals .................................. 42
2.2.4. Modification of Transition Barriers ........... 44
2.3. Geometric Evolution of the Lattice in Nanocrystals ... 46
2.3.1. Grain Size Dependence ......................... 46
2.3.2. Theory ........................................ 47
2.3.3. Influence of the Nanocrystal Surface or
Interface on the Lattice Parameter ............ 50
2.3.4. Is There a Continuous Variation of the
Crystal State Within Nanocrystals? ............ 51
References ................................................ 53
3. Thermodynamics and Solid—Liquid Transitions
P. Labastie, F. Calvo .................................... 55
3.1. Size Dependence of the Solid-Liquid Transition ............ 56
3.1.1. Prom the Macroscopic to the Nanometric ............. 56
3.1.2. Prom Nanoparticles to Molecules .................... 64
3.2. Thermodynamics of Very Small Systems ...................... 67
3.2.1. General Considerations ............................. 67
3.2.2. Non-Equivalence of the Gibbs Ensembles ............. 68
3.2.3. Dynamically Coexisting Phases ...................... 69
3.2.4. Stability of an Isolated Particle. Thermodynamic
Equilibrium ........................................ 73
3.3. Evaporation: Consequences and Observations ................ 74
3.3.1. Statistical Theories of Evaporation ................ 74
3.3.2. Link with the Solid-Liquid Transition. Numerical
Results ............................................ 79
3.3.3. Experimental Investigation of Evaporation .......... 80
3.3.4. Beyond Unimolecular Evaporation .................... 81
3.3.5. Toward the Liquid-Gas Transition ................... 82
References ..................................................... 86
4. Modelling and Simulating the Dynamics of Nano-Objects
A. Pimpinelli ............................................ 89
4.1. Introduction .............................................. 89
4.2. Free Clusters of Atoms. Molecular Dynamics Simulations .... 90
4.3. Evolution of Free and Supported Nanoclusters Toward
Equilibrium. Kinetic Monte Carlo Simulations .............. 93
References ..................................................... 97
Part II Physical and Chemical Properties on the Nanoscale
5. Magnetism in Nanomaterials
D. Givord ............................................... 101
5.1. Introduction ............................................. 101
5.2. Magnetism in Matter ...................................... 102
5.2.1. Magnetic Moment ................................... 102
5.2.2. Magnetic Order .................................... 105
5.2.3. Magnetocrystalline Anisotropy ..................... 108
5.3. Magnetisation Process and Magnetic Materials ............. 110
5.3.1. Energy of the Demagnetising Field. Domains and
Walls ............................................. 111
5.3.2. The Magnetisation Process ......................... 112
5.3.3. Magnetic Materials ................................ 115
5.4. Magnetism in Small Systems ............................... 116
5.4.1. Magnetic Moments in Clusters ...................... 116
5.4.2. Magnetic Order in Nanoparticles ................... 119
5.4.3. Magnetic Anisotropy in Clusters and
Nanoparticles ..................................... 120
5.5. Magnetostatics and Magnetisation Processes in
Nanoparticles ............................................ 121
5.5.1. Single-Domain Magnetic Particles .................. 121
5.5.2. Thermal Activation and Superparamagnetism ......... 122
5.5.3. Coherent Rotation in Nanoparticles ................ 123
5.5.4. From Thermal Activation to the Macroscopic
Tunnel Effect ..................................... 124
5.6. Magnetism in Coupled Nanosystems ......................... 126
5.6.1. Exchange-Coupled Nanocrystals. Ultrasoft
Materials and Enhanced Remanence .................. 126
5.6.2. Coercivity in Nanocomposites ...................... 128
5.6.3. Exchange Bias in Systems of Ferromagnetic
Nanoparticles Coupled with an Antiferromagnetic
Matrix ............................................ 130
References. 132
6. Electronic Structure in Clusters and Nanoparticles
F. Spiegelman ........................................... 135
6.1. Introduction ............................................. 135
6.2. Liquid-Drop Model ........................................ 139
6.3. Methods for Calculating Electronic Structure ............. 141
6.3.1. Born-Oppenheimer Approximation. Surface
Potential ......................................... 142
6.3.2. Ab Initio Calculation of Electronic Structure ..... 144
6.3.3. Density Functional Theory ......................... 147
6.3.4. Charge Analysis ................................... 149
6.3.5. Approximate and Semi-Empirical Descriptions ....... 150
6.3.6. Energy Bands and Densities of States .............. 152
6.4. Applications to Some Typical Examples .................... 154
6.4.1. Metallic Nanoparticles ............................ 154
6.4.2. Molecular Clusters ................................ 162
6.4.3. Ionic and Ionocovalent Clusters ................... 170
6.4.4. Covalent Systems .................................. 175
6.5. Valence Changes .......................................... 178
6.5.1. Transitions with Size ............................. 178
6.5.2. Transitions with Stoichiometry .................... 179
6.6. Nanotubes ................................................ 182
6.7. Prospects ................................................ 185
References .................................................... 188
7. Optical Properties of Metallic Nanoparticles
F. Vallee ............................................... 197
7.1. Optical Response for Free Clusters and Composite
Materials ................................................ 198
7.2. Optical Response in the Quasi-Static Approximation:
Nanospheres .............................................. 199
7.3. Dielectric Constant of a Metal: Nanometric Size Effect ... 203
7.4. Surface Plasmon Resonance in the Quasi-Static
Approximation: Nanospheres ............................... 207
7.5. Surface Plasmon Resonance: Quantum Effects for Small
Sizes (D < 5nm) .......................................... 211
7.6. General Case for Nanospheres: The Mie Model .............. 213
7.7. Non-Spherical or Inhomogeneous Nanoparticles in the
Quasi-Static Model ....................................... 216
7.7.1. Shape Effects: Ellipsoids ......................... 216
7.7.2. Structure Effects: Core-Shell System .............. 217
7.8. Optical Response of a Single Metal Nanoparticle .......... 219
7.9. Electromagnetic Field Enhancement: Applications .......... 221
7.9.1. Nonlinear Optical Response ........................ 221
7.9.2. Time-Resolved Spectroscopy ........................ 222
7.9.3. Local Enhancement of Raman Scattering: SERS ....... 223
7.10.Conclusion ............................................... 224
References ............................................... 226
8. Mechanical and Nanomechanical Properties
C. Tromas, M. Verdier, M. Fivel, P. Aubert,
S. Labdi, Z.-Q. Feng, M. Zei, P. Joli ................... 229
8.1. Macroscopic Mechanical Properties ........................ 229
8.1.1. Introduction ...................................... 229
8.1.2. Elastic Properties ................................ 229
8.1.3. Hardness .......................................... 231
8.1.4. Ductility ......................................... 234
8.1.5. Numerical Modelling ............................... 236
8.2. Nanomechanical Properties ................................ 238
8.2.1. Experimentation ................................... 238
8.2.2. Computer Modelling ................................ 254
References .................................................... 265
9. Superplasticity
T. Rouxel ............................................... 269
9.1. Introduction ............................................. 269
9.2. Mechanism ................................................ 270
9.3. Superplastic Nanostructured Materials .................... 276
9.4. Industrial Applications .................................. 277
References .................................................... 280
10.Reactivity of Metal Nanoparticles
J.-C. Bertolini, J.-L. Rousset .......................... 281
10.1.Size Effects ............................................. 282
10.1.1.Structural Properties ............................. 282
10.1.2.Electronic Properties ............................. 286
10.1.3.Reactivity in Chemisorption and Catalysis
of Monometallic Nanoparticles ..................... 288
10.2.Support Effects .......................................... 293
10.3.Alloying Effects ......................................... 295
10.3.1.Effect of Surface Segregation ..................... 296
10.3.2.Geometric Effects ................................. 297
10.3.3.Electronic Effects ................................ 298
10.4.Preparation and Implementation in the Laboratory
and in Industry .......................................... 299
References .................................................... 302
11.Inverse Systems - Nanoporous Solids
J. Patarin, O. Spalla, F. Di Renzo ...................... 305
11.1.Introduction ............................................. 305
11.2.Nomenclature: The Main Families of Porous Materials ...... 305
11.3.Zeolites and Related Microporous Solids. Definition
and Structure ............................................ 307
11.4.Ordered Mesoporous Solids ................................ 309
11.5.Disordered Nanoporous Solids ............................. 311
References .................................................... 314
12.Inverse Systems - Confined Fluids: Phase Diagram and
Metastability
E. Charlaix, R. Denoyel ................................. 315
12.1.Displacement of First Order Transitions: Evaporation
and Condensation ......................................... 315
12.1.1.Adsorption Isotherms .............................. 315
12.1.2.Capillary Condensation ............................ 317
12.1.3.Capillary Pressure and the Kelvin Radius .......... 319
12.1.4.Non-Wetting Fluid ................................. 320
12.1.5.Perfectly Wetting Fluid ........................... 320
12.1.6.Hysteresis, Metastability and Nucleation .......... 322
12.2.Melting-Solidification ................................... 325
12.3.Modification of the Critical Temperature ................. 329
12.4.Ultraconfinement: Microporous Materials .................. 331
References .................................................... 334
13.Supramolecular Chemistry: Applications and Prospects
N. Solladie, J.-F. Nierengarten ......................... 335
13.1.From Molecular to Supramolecular Chemistry ............... 335
13.2.Molecular Recognition .................................... 335
13.3.Anionic Coordination Chemistry and Recognition
of Anionic Substrates .................................... 338
13.4.Multiple Recognition ..................................... 338
13.5.Applications ............................................. 341
13.6.Prospects ................................................ 343
References .................................................... 344
14.Nanocomposites: The End of Compromise
H. Van Damme ............................................ 347
14.1.Composites and Nanocomposites ............................ 347
14.2.Introduction to Polymers ................................. 351
14.2.1.Ideal Chains ...................................... 352
14.2.2.The Glass Transition .............................. 354
14.2.3.Entropic Elasticity ............................... 357
14.3.Nanofillers .............................................. 359
14.3.1.Clays ............................................. 359
14.3.2.Carbon Nanotubes .................................. 363
14.4.Strengthening and Permeability Control: Models ........... 364
14.4.1.Strengthening: Increasing the Modulus ............. 364
14.4.2.Impermeability: Reducing the Diffusivity .......... 367
14.5.Strengthening and Permeability of Nanocomposites:
Facts and Explanations ................................... 369
14.5.1.Strengthening: Successes and Failures ............. 369
14.5.2.Impermeability .................................... 376
14.5.3.Dimensional Stability ............................. 377
14.5.4.Fire Resistance ................................... 379
14.6.Conclusion ............................................... 379
References .................................................... 380
Part III Synthesis of Nanomaterials and Nanoparticles
15.Specific Features of Nanoscale Growth
J. Livage, D. Roux ...................................... 383
15.1.Introduction ............................................. 383
15.2.Thermodynamics of Phase Transitions ...................... 383
15.3.Dynamics of Phase Transitions ............................ 385
15.3.1.Thermodynamics of Spinodal Decomposition .......... 386
15.3.2.Thermodynamics of Nucleation-Growth ............... 388
15.4.Size Control ............................................. 389
15.5.Triggering the Phase Transition .......................... 391
15.6.Application to Solid Nanoparticles ....................... 392
15.6.1.Controlling Nucleation ............................ 392
15.6.2.Controlling Growth ................................ 393
15.6.3.Controlling Aggregation. Stability of Colloidal
Dispersions .............................................. 393
15.7.Breaking Matter into Pieces .............................. 393
References ............................................... 394
16.Gas Phase Synthesis of Nanopowders
Y. Champion ............................................. 395
16.1.Introduction ............................................. 395
16.2.The Need for Gas State Processing ........................ 397
16.3.Main Stages of Gas Phase Synthesis ....................... 400
16.4.Spontaneous Condensation of Nanoparticles: Homogeneous
Nucleation ............................................... 401
16.5.Undesirable Post-Condensation Effects and Control
of the Nanometric State .................................. 408
16.5.1.Why Do These Effects Occur? ....................... 409
16.5.2.Particle Growth by Gas Condensation ............... 410
16.5.3.Coalescent Coagulation ............................ 411
16.6.Vapour Formation and the Production of Nanopowders ....... 416
16.6.1.Physical Processes ................................ 416
16.6.2.Chemical Processing: Laser Pyrolysis .............. 424
16.7.Conclusion ............................................... 426
References .................................................... 426
17.Synthesis of Nanocomposite Powders by Gas—Solid
Reaction and by Precipitation
C. Laurent .............................................. 429
17.1.Introduction ............................................. 429
17.2.Synthesis of Nanocomposite Powders by Gas-Solid
Reactions ................................................ 430
17.2.1.Synthesis of Intergranular Nanocomposite
and Nano-Nano Composite Powders .......................... 430
17.2.2.Synthesis of Intragranular and Hybrid
Nanocomposite Powders ............................. 433
17.3.Conclusion ............................................... 438
References ............................................... 438
18.Colloidal Methods and Shape Anisotropy
D. Ingert ............................................... 441
18.1.Introduction ............................................. 441
18.2.Surfactants .............................................. 442
18.3.Reverse Micelles: Spherical Nanoreactors ................. 445
18.4.Factors Affecting Shape Control .......................... 448
18.4.1. Effect of the Colloidal Template on Shape
Control .......................................... 448
18.4.2.Effect of Anions on Nanocrystal Growth ............ 449
18.4.3.Effect of Molecular Adsorption on
Nanocrystalline Growth ............................ 451
18.5.Conclusion ............................................... 452
References .................................................... 453
19.Mechanical Milling
E. Gaffet, G. Le Caer ................................... 455
19.1.Introduction ............................................. 455
19.1.1.Mechanosynthesis .................................. 455
19.1.2.Mechanical Activation ............................. 455
19.2.Ball Mills ............................................... 456
19.3.Mechanisms ............................................... 458
19.3.1.Reducing Cristallite Sizes ........................ 458
19.3.2.Parameters Relevant to Mechanical Alloying
and Activation .................................... 459
19.3.3.Mechanics of Mechanical Alloying .................. 461
19.4.Materials and Their Applications ......................... 462
19.4.1.Mechanical Alloying ............................... 462
19.4.2.Mechanical Activation ............................. 462
19.5.Shaping and Densifying Nanomaterials ..................... 464
19.5.1.Standard Processes ................................ 464
19.5.2.Mechanically-Activated Field-Activated
Pressure-Assisted Synthesis (MAFAPAS) ............. 464
19.6.Severe Plastic Deformation (SPD) ......................... 466
19.6.1.High-Pressure Torsion (HPT) ....................... 467
19.6.2.Equal Channel Angular Pressing (ECAP) ............. 468
19.7.Bulk Mechanical Alloying ................................. 468
19.8.Synthesis of Nanocomposites by Extrusion, Drawing,
and Embossing ............................................ 468
References .................................................... 469
20.Supercritical Fluids
A. Taleb ................................................ 473
20.1.Definition ............................................... 473
20.2.Physicochemical Properties ............................... 475
20.2.1.Solubility ........................................ 475
20.2.2.Viscosity ......................................... 477
20.2.3.Diffusion ......................................... 477
20.2.4.Thermal Conductivity .............................. 479
20.3.Applications ............................................. 479
20.3.1.Purification and Extraction ....................... 479
20.3.2.Synthesis ......................................... 480
References .................................................... 484
Part IV Fabrication of Nanostructured Bulk Materials and
Nanoporous Materials
21.Bulk Nanostructured Materials Obtained by Powder
Sintering
F. Bernard, J.-C. Niepce ................................ 489
21.1.Sintering ................................................ 489
21.1.1.Definition ........................................ 489
21.1.2.The Physical Phenomena of Sintering ............... 489
21.1.3.Different Sintering Conditions .................... 489
21.1.4.Preserving Nanostructure During Sintering ......... 491
21.2.Spark Plasma Sintering (SPS) ............................. 491
21.2.1.Basic Principle ................................... 491
21.2.2.Advantages of the SPS Process ..................... 493
21.2.3.Illustrations in the Field of Nanomaterials ....... 493
References .................................................... 495
22.Self-Assembly of Nanomaterials at Macroscopic Scales
A. Courty ............................................... 497
22.1.Fabrication of Nanomaterials ............................. 498
22.2.2D and 3D Nanomaterial Structures ........................ 500
22.2.1.Depositing Nanomaterials on a Solid Substrate ..... 500
22.2.2.Forces Inducing Self-Organisation ................. 502
22.2.3.Crystal Structure of 2D and 3D Nanomaterials ...... 508
22.3.Conclusion ............................................... 513
References .................................................... 513
23.Assemblies of Magnetic Nanoparticles
J. Richardi ............................................. 515
23.1.Magnetic Properties of Nanoparticle Assemblies ........... 515
23.2.Structure of Magnetic Nanoparticle Assemblies
Deposited Without Field .................................. 519
23.3.Structure of Magnetic Nanoparticle Assemblies
Deposited with Field ..................................... 523
23.3.1.Perpendicular Field ............................... 523
23.3.2.Parallel Field .................................... 526
References .................................................... 527
24.Nanostructured Coatings
J.-P. Riviere ........................................... 529
24.1.Methodology for Making Superhard Nanostructured
Coatings ................................................. 530
24.1.1.Multilayers with Nanometric Period ................ 530
24.1.2.Nanocomposites .................................... 532
24.2.Methods of Synthesis ..................................... 536
24.2.1.General Principles ................................ 536
24.2.2.Plasma-Activated Chemical Vapour Deposition
(PACVD) ........................................... 539
24.2.3.Physical Vapour Deposition by Sputtering
and Cathodic Arc .................................. 540
24.2.4.PVD by Ion Beam Sputtering ........................ 544
References .................................................... 546
25.Dispersion in Solids
D. Babonneau ............................................ 549
25.1.Chemical Methods ......................................... 550
25.1.1.Synthesis of Doped Glasses ........................ 550
25.1.2.Sol-Gel Method .................................... 551
25.2.Physical Methods ......................................... 554
25.2.1.Ion Implantation .................................. 555
25.2.2.Vapour Deposition and Sputtering Methods .......... 559
25.2.3.Pulsed Laser Deposition.562
25.2.4.Low Energy Cluster Beam Deposition (LECBD) ........ 563
References .................................................... 565
26.Nanoporous Media
J. Patarin, O. Spalla, F. Di Renzo ...................... 569
26.1.Introduction ............................................. 569
26.2.Synthesis of Crystalline Microporous Solids .............. 569
26.2.1.Methods of Synthesis .............................. 569
26.2.2.The Crystallisation Process Exemplified by
Zeolites .......................................... 571
26.2.3.Main Organic Structure-Directing Agents Used to
Synthesise Crystalline Microporous Solids ......... 573
26.2.4.Role of Inorganic Cations and Organic Species ..... 573
26.2.5.Organic Species and the Template Effect ........... 574
26.2.6.Porosity of Zeolites and Related Solids ........... 576
26.2.7.Applications of Zeolitic Materials ................ 577
26.3.Synthesis of Ordered Mesoporous Solids ................... 579
26.3.1.Methods of Synthesis .............................. 579
26.3.2.Definition and Role of the Surfactant ............. 581
26.3.3.Mechanisms for the Formation of MCM-41 Phase ...... 582
26.3.4.Characteristics of Mesoporous Silicas Obtained
in the Presence of Amphiphilic Molecules .......... 588
26.3.5.Structural Characterisation of Nanoporous
Solids by X-Ray and Neutron Scattering ............ 589
26.4.Conclusion ............................................... 593
References .................................................... 593
27.Molecular Imprinting
V. Dufaud, L. Bonneviot ................................. 597
27.1.Introduction ............................................. 597
27.2.Fundamental Considerations ............................... 598
27.2.1.General Principles ................................ 598
27.2.2.Role of Complexation Sites During the
Imprinting Process ................................ 599
27.2.3.Structure and Properties of the Polymer Matrix .... 602
27.3.Procedures and Methods for Molecular Imprinting .......... 603
27.3.1.Imprinted Organic Polymers ........................ 603
27.3.2.Imprinted Inorganic Matrices ...................... 604
27.4.Applications ............................................. 608
27.4.1.Separating a Mixture of Herbicides ................ 609
27.4.2.Synthesis of a-Aspartame .......................... 609
27.4.3.Chiral Separation of Amino Acids by Ligand
Exchange at a Metal Site .......................... 610
27.4.4.Specific Elimination of Lanthanides and
Actinides in a Highly Radioactive Effluent ........ 610
27.5.Recent Challenges and Progress ........................... 612
References .................................................... 613
Part V Applications of Nanomaterials
28.Electronics and Electromagnetism
J.-C. Niepce, D. Givord ................................. 617
28.1.Multilayer Ceramic Capacitors ............................ 617
28.1.1.What Is a Multilayer Ceramic Capacitor? ........... 617
28.1.2.Market Requirements ............................... 619
28.1.3.Constraints Laid Down by these Requirements ....... 620
28.1.4.ВаTiO3 Ceramic Dielectrics with Nanograins:
The Favoured Solution ............................. 621
28.2.Magnetic Recording ....................................... 626
28.2.1.General Operation ................................. 626
28.2.2.Recording Materials.Longitudinal and
Perpendicular Recording ........................... 627
28.2.3.Write Heads ....................................... 629
28.2.4.Read Heads ........................................ 629
28.2.5.Disk Drive Motor .................................. 630
References ............................................... 631
29.Optics
P. Maestro, M. Chagny, P.-P. Jobert, H. Van Damme,
S. Berthier ............................................. 633
29.1.Cosmetics ................................................ 633
29.1.1.Introduction ...................................... 633
29.1.2.Nano-Titanium Oxides in Cosmetics: Solar Skin
Protection ........................................ 633
29.1.3.Conclusion ........................................ 635
29.2.Nanophosphors ............................................ 635
29.2.1.Introduction ...................................... 635
29.2.2.Phosphors: General Considerations ................. 636
29.2.3.Operating Principle ............................... 638
29.2.4.Industrial Applications ........................... 638
29.2.5.Conclusion ........................................ 640
29.3.Surface Nanoengineering .................................. 640
29.3.1.What Is the Surface Area of a Town? ............... 640
29.3.2.Superhydrophobic Surfaces ......................... 641
29.3.3.Self-Cleaning and Superhydrophilic Surfaces ....... 644
29.3.4.When Concrete Cleans the Air We Breathe ........... 648
29.4.Photonic Crystals ........................................ 649
29.4.1.The Colourful World of Birds and Insects .......... 649
29.4.2.Photonic Crystals and Photonic Band Gaps .......... 650
29.4.3.Guides and Cavities ............................... 653
29.4.4.Prom Colloidal Crystals to Photonic Crystals ...... 654
References .................................................... 658
30.Mechanics
P. Maestro, E. Gaffet, G. Le Caer, A. Mocellin,
E. Reynaud, T. Rouxel, M. Soulard, J. Patarin,
L. Thilly, F. Lecouturier ............................... 661
30.1.Silica Precipitates for High-Performance Tyres ........... 661
30.1.1.Fabrication of Silica Precipitates ................ 661
30.1.2.Tyres and Other Applications ...................... 662
30.2.Ceramic-Metal Composite Welding Supports ................. 663
30.2.1.Ceramics .......................................... 664
30.2.2.Reactive Mechanical Alloying and High-Energy
Ball Milling ...................................... 665
30.2.3.Improving Properties .............................. 667
30.3.Reinforced Amorphous Matrices ............................ 668
30.3.1.Not All Materials Are Ordered ..................... 668
30.3.2.Incorporating Nanoparticles into Amorphous
Matrices .......................................... 669
30.3.3.Prospects ......................................... 673
30.3.4.The Long Road ..................................... 675
30.4.Nanoporous Solids as Molecular Springs, Shock Absorbers
and Bumpers .............................................. 676
30.4.1.Introduction ...................................... 676
30.4.2.Basic Idea ........................................ 676
30.4.3.Pressure-Volume Diagram ........................... 677
30.4.4.Stored Energy and Restored Energy ................. 678
30.4.5.Causes of Irreversibility ......................... 679
30.4.6.Behaviour of the Solid and Liquid ................. 680
30.4.7.Practical Applications ............................ 683
30.5.High Field Coils ......................................... 685
30.5.1.Specifications for Generating High Pulsed
Magnetic Fields ................................... 685
30.5.2.Synthesis of Reinforced Copper Matrix
Conductors ........................................ 687
30.5.3.Geometry and Microstructure of Cu/Nb
Nanofilamentary Conductors ........................ 688
30.5.4.Physical Properties of Cu/Nb Nanofilamentary
Conductors ........................................ 690
30.5.5.Conclusion ........................................ 693
References .................................................... 693
31.Biology and the Environment
P. Maestro, P. Couvreur, D. Roux, D. Givord,
J.-A. Dalmon, J.-C. Bertolini, F.J. Cadete
Santos Aires ............................................ 695
31.1.Inorganic Catalysts for Diesel Engines ................... 695
31.2.Nanotechnology and New Medicines ......................... 697
31.2.1.Introduction ...................................... 697
31.2.2.Artificial Carriers: Liposomes and
Nanoparticles ..................................... 697
31.2.3.Conclusion ........................................ 701
31.3.Magnetic Nanoparticles and Biomedical Applications ....... 701
31.3.1.Magnetotactic Bacteria ............................ 702
31.3.2.Homing Pigeons .................................... 702
31.3.3.Magnetic Separation ............................... 703
31.3.4.Magnetic Nanoparticles as MRI Contrast Agents ..... 704
31.3.5.Magnetic Nanoparticles and Treatment of Tumours ... 705
31.4.Zeolitic Membranes for Separation Processes
and Catalytic Reactors ................................... 706
31.4.1.Introduction ...................................... 706
31.4.2.Microporous Membranes ............................. 707
31.4.3.Zeolitic Membranes: Synthesis and
Characterisation .................................. 707
31.4.4.Application to Gas Separation ..................... 708
31.4.5.Application to a Catalytic Reactor ................ 709
31.5.Metal Nanoparticles and Catalysis ........................ 710
31.5.1.Synthesis and Characterisation of Pd/Si3N4
Catalysts ......................................... 711
31.5.2.Total Oxidation of Methane: Implementation in
the Laboratory .................................... 713
31.5.3.Application to Radiant Panels (Infrared Energy
Emission) ......................................... 713
References ............................................... 715
|